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Jets in heavy-ion collisions as hard probes

Jets are collimated spray of particles.

The hard scattering occurs early in the collision prior to the
formation of the QGP.

Jets are then used as probes of the medium.
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pQCD approach to jets in the plasma

High-pT jets are valuable because it is possible to rely on pQCD to
predict their properties.
The difficulties come from these two mechanisms of radiation:

• the usual, “vacuum-like” bremsstrahlung through which a parton
evacuates its virtuality.

• medium-induced radiations because of the multiple collisions with
the medium constituents.

How can we include both mechanisms ?
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General pQCD picture
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Emissions in QCD: vacuum-like

Vacuum-like emissions (VLEs) triggered by the virtuality
according to the Bremsstrahlung law:

d2Pvle '
αsCR

π

dω

ω

dθ2

θ2

Includes soft and collinear divergences.

Markovian process with angular ordering of successive emissions to
account for quantum interferences.
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Emissions in QCD: medium-induced emissions

Quenching parameter q̂: 〈k2
⊥〉 transferred from the medium to a

parton per unit time because of collisions with medium-consituents.

Medium-induced emissions (MIEs) triggered by these interactions:

d2Pmie(ω, θ) =
αsCR

π

√
q̂L2

ω3
Pbroad(ω, θ)dωdθ

No collinear divergences.

Markovian process in formation time tf = ω/k2
⊥ / no angular

ordering.
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How does the dense QCD medium change the evolution ?
Phase space constraint for VLEs

During tf = 1/(ωθ2), a parton acquires a transverse momentum:
∆k2
⊥ = q̂tf

For the vacuum-like shower inside, it provides a lower bound on the
k⊥ of VLEs: k2

⊥ > q̂tf
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How does the dense QCD medium change the evolution ?
Decoherence

In the medium, an antenna loses its color coherence after a time
tdecoh = (q̂θ̄2)−1/3. (Mehtar-Tani, Salgado, Tywoniuk, 2010-1 ; Casalderrey-Solana, Iancu, 2011)

θ̄

L

tcoh = (q̂θ̄2)−1/3

However, no consequences for VLEs in the medium (PC, Iancu, Mueller,

Soyez 2018)

• VLE (k2
⊥ ≥ q̂tf ) at large angle (θ ≥ θ̄) ⇒ tf ≤ tdecoh.

• Large angle emissions forbidden by color coherence.
• Gluon cascades are angular ordered as in the vacuum.

8 / 30



Introduction General pQCD picture Energy loss and RAA Fragmentation function Conclusion

How does the dense QCD medium change the evolution ?
Decoherence

In the medium, an antenna loses its color coherence after a time
tdecoh = (q̂θ̄2)−1/3. (Mehtar-Tani, Salgado, Tywoniuk, 2010-1 ; Casalderrey-Solana, Iancu, 2011)

θ̄

L

tcoh = (q̂θ̄2)−1/3

But an important consequence for the first emission outside:

• Critical angle θc = 2/
√
q̂L3 such that tdecoh(θc) = L.

• If the angle of the last emission inside is larger than θc , then
the first emission outside can have any angle.
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What about the medium-induced radiations ?

Via multiple soft scattering, the medium may also trigger additional
emissions, called medium-induced radiations. (Baier, Dokshitzer, Mueller,

Peigné, and Schiff; Zakharov 1996–97)

Transverse momentum comes from multiple scatterings: k2
⊥ = q̂tf .

Consequently, they can only occur once the vacuum like shower
inside the medium has evacuated the initial virtuality until k2

⊥ ∼ q̂tf .
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Jet evolution in a dense QCD medium
Summary

The evolution of a jet factorizes into three steps:

(1) one angular ordered vacuum-like shower inside the medium ,
(2) medium-induced emissions triggered by previous sources,
(3) finally, a vacuum-like shower outside the medium.

• Re-opening of the phase space for the first emission outside the
medium.
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Monte-Carlo implementation in a nutshell

Two modules required:

• Vacuum-like shower: angular ordered shower of VLEs with
DGLAP splitting function and running coupling to produce the
VLEs inside and outside the medium.

• Medium-induced shower: time-ordered shower of MIEs with
angle set by the momentum broadening during propagation
through the medium.

The factorization is very suitable for MC implementation.

Leading parton produced by the hard process
↓

Vacuum-like shower inside
↓

Medium-induced shower during a time L
↓

Vacuum-like shower outside
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Energy loss and RAA ratio
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Basic features of energy loss

The energy is lost by the jet because of the medium-induced
cascade transporting the energy at large angle via multiple
branchings.

Energy is transferred to softer and softer gluons which are
deviated outside the jet.

Typical scale of energy loss is ωbr = ᾱ2
sωc , the scale below

which multiple medium-induced branchings become important.
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Energy loss E(pT ,R) for medium-induced jets
Red curves

For pT � ωbr , the energy loss via MIEs is constant and ' ωbr .

As a function of R, the energy loss decreases since one recovers
more and more the large angles MIEs.
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Energy loss E(pT ,R) for full jets
Blue curves

As a function of pT and R, the energy loss increases because the
VLEs multiplicity inside the medium increases:

E(pT ,R) ∝ ωbr

∫ pT
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RAA ratio: jet cross section in PbPb/ jet cross section in pp
The nuclear modification factor is controlled by ωbr = ᾱ2

sωc
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Summary

In-medium multiplicity of VLEs keeps RAA small.

RAA mostly controlled by the multiple branchings scale
ωbr = ᾱ2

s q̂L
2/2.
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Nuclear modification of the jet
fragmentation function
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Definition

Energy (' transverse momentum) distribution of particles within
jets.

D(z) =
1

Njets

dN

dz

with z = pT cos(∆R)/pT ,jet ∼ pT/pT ,jet

Nuclear modification of the jet fragmentation function:

RD(z) =
DPbPb(z)

Dpp(z)
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This observable is not IRC safe !

Simple argument: the integral over
z of D(z) is the total intrajet
multiplicity which is obviously not
infrared nor collinear safe.

Nevertheless, D(z) is calculable ⇒
but strong dependence upon the
cut-off of the calculation.

Two way out: make “qualitative”
statement and focus on the ratio
RD(z) which is less sensitive to the
cut-off.
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The unfolded ATLAS data

Robust pattern when varying
√
s.

Enhancement of low z and z ∼ 1.

Suppression at intermeditate z .
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Enhancement at low z : decoherence effect

Double-logarithmic resummation

At low z , the multiplicity of soft fragments comes from the outside
cascades triggered by decoherence of in-medium sources. At DLA:

DPbPb(pT ) =

√
ᾱs

2

number of “in” sources︷ ︸︸ ︷
Nmed

DL cascade︷ ︸︸ ︷
exp(ᾱs log(2pT/Λ2L))
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Enhancement at low z : MC results beyond DLA

DPbPb(pT ) =
√
ᾱs

2 Nmed

poor estimate at DLA !︷ ︸︸ ︷
exp(ᾱs log(2pT/Λ2L))

However, when MIEs are switched on, additional sources increase
the Nmed factor.

If decoherence swichted off, the enhancement at low z disappears.
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z ∼ 1 behavior
Leading-log calculation for “monochromatic” jets

Consider the cumulative distribution Σ(x) =
∫ 1

x
dzD(z).

At leading-log accuracy in the vacuum,

ΣVLE
R (x) = exp

(
− 2CR

π

∫ 1

1−x

dz

z

∫ θ̄

0

dθ

θ
αs(zEθ)Θ(zEθ − Q0)

)
In the presence of the medium, 3 effects:

• vetoed region: Θ(zEθ − Q0)→ Θ(zEθ − Q0)Θnot vetoed(z , θ)
• energy loss shift: z → ξ = (zE − εg )/(E − εg − εR)
• intrajet medium-induced emissions: ΣR = ΣVLE

R ΣMIE
R︸ ︷︷ ︸

∝exp(−ᾱs

√
θ̄/θc )

θ̄

(z, θ)

ǫg

ǫq

ξ
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MC vs analytics for “monochromatic” quark jets
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Comments

Good qualitative agreement between MC and data.

Dependence upon cut-off Q0 smaller in the ratio RD(z).

Stronger enhancement in the MC calculation for the “energy loss
only” case because all MIEs are sent outside the jet cone.
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Effect of the steeply falling spectrum

For a given jet pT ,

RD(x) =

effect of the spectrum︷ ︸︸ ︷
Qmed(pT , x)

Qvac(pT )

Dq,med(x |pT )

Dq,vac(x |pT )︸ ︷︷ ︸
already estimated
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Effect of the initial quark/gluon pT spectrum

pT = 200 GeV

q=1.5 GeV2/fm, L=4 fm, αs=0.24

→ Qmed encompasses the idea that a jet with few fragments loses less
energy than an average jet.

Qmed(pT , x) =
dσq

dE (pT + εq + εg )
dσq

dE (pT + Eq(pT )) +
dσg

dE (pT + Eg (pT ))
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Full MC results
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Comments

Low z and high z enhancement well captured.

Depletion in between: effect of normalization.
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Conclusion
Take-home messages

pQCD picture for jet evolution in a dense QCD medium with
factorization between vacuum-like emissions and medium-induced
emissions.

RAA ratio controlled by the scale ωbr ∼ α2
s q̂L

2. Strongly suppressed
even at high pT because of the increasing number of VLEs inside
the medium.

Jet fragmentation function: enhancement at low z due to
decoherence of sources created inside the medium.

z close to 1 behavior of the jet fragmentation function:
competition between several effects...
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THANK YOU !
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In-medium multiplicity of VLEs
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Cut-off dependence of the cumulative fragmentation
function
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Cumulative fragmentation distribution for q/g jets in
vacuum
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Full formula for the fragmentation function at z ∼ 1

Using ξ0 = 1− x ,

xD(x) =

∫∞
0

dE
∑

i=q,g
dσi

dE

∫ 1

0
dξ
∫ R

0
dθδ(Ξ(ξ, θ)− ξ0) xdNi

dξdθ δ(pT − E + ε(ξ, θ))∫∞
0

dE
∑

i=q,g
dσi

dE δ(pT − E + Ei (E ))

with

ε(ξ, θ) = εg (ξE ) + εi ((1− ξ)E ) if (z , θ) ∈ inside region

= εi (E ) if (z , θ) ∈ outside region

and

dNi

dξdθ
=

2Ciαs(ξẼθ)

π

1

ξθ
Θ(ξẼθ − Q0)Θnot vetoed(ξ, θ)

× exp
(
−
∫ 1

ξ

dz

∫ θ̄

0

dθ′
2Ciαs(zẼθ′)

π

1

zθ′
Θ(zẼθ′ − Q0)Θnot vetoed(z , θ′)

)
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