

European Research Council

Established by the European Commission

Prospectives for heavy-ion physics at LHCb in LHC Run 3-Run 4

Benjamin Audurier*, Università degli studi di Cagliari

DOTIONATION TO THE TABLE AND A TOTAL AND A TABLE AND A

*benjamin.audurier@cern.ch

GDR QCD - Orsay - 25 Nov. 2019

The LHCb detector

<u>10.1142/S0217751X15300227</u>

The LHCb detector

Can operate both in pp/pPb/PbPb and fixed-target !

<u>10.1142/S0217751X15300227</u>

Distribution of vertices overlaid on detector display. z-axis is scaled by 1:100 compared to transverse dimensions to see the beam angle.

n I - Beam 2, Beam I - Gas, Beam 2 - Gas.

Fixed-target mode: **unique at LHC**!

- Injecting gas in the LHCb VErtex LOcator (VELO) tank.
- Noble gas only : He, Ne, Ar
- Gas pressure : 10⁻⁷ to 10⁻⁶ mbar.

List of publications

Published papers

TITLE	DOCUMENT	JOURNAL	SUBMITTED	CITED	TITLE	DOCUMENT NUMBER	SUBMITTED ON	CITED
	NUMBER		ON		Multiplicity-dependent modification of $\chi_{c1}(3872)$ and $\psi(2S)$	CONF-2019-005	14 Nov 2019	
Measurement of B^+ , B^0 and Λ^0_b production in $p{ m Pb}$ collisions at $\sqrt{s_{NN}}=8.16~{ m TeV}$	PAPER-2018-048 arXiv:1902.05599 [PDF]	Phys. Rev. D99 052011 (2019)	14 Feb 2019	12 [plot]	Study of prompt D^0 meson production in <i>p</i> Pb at $\sqrt{s_{\rm NN}} = 8.16$ TeV at LHCb	CONF-2019-004	12 Nov 2019	
First measurement of charm production in fixed-target configuration at the LHC	PAPER-2018-023 arXiv:1810.07907	Phys. Rev. Lett. 122 (2019) 132002	18 Oct 2018	27 [plot]	Measurement of Z production cross-sections in proton-lead collisions at $\sqrt{s_{\rm NN}}=8.16~{\rm TeV}$	CONF-2019-003	12 Nov 2019	
$\mathbf{C}_{\mathbf{k}} = \mathbf{f} \mathbf{Y}_{\mathbf{k}} = \mathbf{f} \mathbf{Y}_{\mathbf{k}}$	[PDF]		17.0.+.2010	10	LHCb projections for proton-lead collisions during LHC Runs 3 and 4	CONF-2018-005	22 Nov 2018	1
Study of 1 production in <i>p</i> PD collisions at $\sqrt{s_{NN}} = 8.16$ TeV	PAPER-2018-035 arXiv:1810.07655 [PDF]	JHEP 11 (2018) 194	17 Oct 2018	[plot]	Study of coherent J/ψ production in lead-lead collisions at $\sqrt{s_{\rm NN}} = 5~{\rm TeV}$ with the LHCb experiment	CONF-2018-003	25 May 2018	16 [plot]
Prompt Λ_c^+ production in <i>p</i> Pb collisions at $\sqrt{s_{NN}} = 5.02$	PAPER-2018-021	JHEP 02 (2019) 102	05 Sep 2018	27 [plot]	Prompt $\Lambda_{ m c}^+$ production in $p{ m Pb}$ collisions at $\sqrt{s_{_{ m NN}}}=5.02{ m TeV}$	CONF-2017-005	01 Sep 2017	7 [plot]
TeV	[PDF]			[piot]	LHCb dimuon and charm mass distributions	CONF-2016-005	19 Jul 2016	2 [plot]
Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}}=110~{\rm GeV}$	PAPER-2018-031 arXiv:1808.06127 [PDF]	Phys. Rev. Lett. 121 (2018) 222001	18 Aug 2018	32 [plot]	Reference pp cross-sections for $\Upsilon(1S)$ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results	CONF-2014-003	08 Aug 2014	5 [plot]
Study of prompt ${\rm D}^0$ meson production in pPb collisions at $\sqrt{s}{=}5~{\rm TeV}$	PAPER-2017-015 arXiv:1707.02750 [PDF]	JHEP 10 (2017) 090	10 Jul 2017	59 [plot]	Reference <i>pp</i> cross-sections for J/ψ studies in proton-lead collisions at $\sqrt{s_{NN}} = 5.02$ TeV and comparisons between ALICE and LHCb results	CONF-2013-013	22 Dec 2013	20 [plot]
Prompt and nonprompt J/ ψ production and nuclear modification in p Pb collisions at $\sqrt{s_{\rm NN}} = 8.16$ TeV	PAPER-2017-014 arXiv:1706.07122 [PDF]	Phys. Lett. B774 (2017) 159	21 Jun 2017	43 [plot]	First analysis of the p Pb pilot run data with LHCb	CONF-2012-034	03 Dec 2012	8 [plot]
Study of $\psi(2S)$ production and cold nuclear matter effects in p Pb collisions at $\sqrt{s_{NN}} = 5$ TeV	PAPER-2015-058 arXiv:1601.07878 [PDF]	JHEP 03 (2016) 133	28 Jan 2016	43 [plot]				
Measurements of long-range near-side angular correlations in $\sqrt{s_{\rm NN}}=5{\rm TeV}$ proton-lead collisions in the forward region	PAPER-2015-040 arXiv:1512.00439 [PDF]	Phys. Lett. B762 (2016) 473	01 Dec 2015	66 [plot]	* 12 nanei	rc		
Observation of Z production in proton-lead collisions at LHCb	PAPER-2014-022 arXiv:1406.2885 [PDF]	JHEP 09 (2014) 030	11 Jun 2014	45 [plot]	12 papers			
Study of Υ production and cold nuclear matter effects in pPb collisions at $\sqrt{s_{NN}}=5 TeV$	PAPER-2014-015 arXiv:1405.5152 [PDF]	JHEP 07 (2014) 094	20 May 2014	72 [plot]	* 10 notes			
Study of J/ψ production and cold nuclear matter effects in p Pb collisions at $\sqrt{s_{NN}} = 5$ TeV	PAPER-2013-052 arXiv:1308.6729 [PDF]	JHEP 02 (2014) 72	30 Aug 2013	159 [plot]	* Link to a	all documents		

Conference notes

- LIIN IO AII AOCUIICIIIO

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Highlights of ongoing analysis ...

Compact tetraquark/pentaquark

Diquark-diquark

PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Hadrocharmonium/ adjoint charmonium

PLB 666 344 (2008) PLB 671 82 (2009)

- * X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else ?

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

ng Compact tetraquark/pentaquark

Diquark-diquark

PRD 71, 014028 (2005) PLB 662 424 (2008)

Hadronic Molecules

PLB 590 209 (2004) PRD 77 014029 (2008) PRD 100 0115029(R) (2019)

Hadrocharmonium/ adjoint charmonium

PLB 666 344 (2008) PLB 671 82 (2009)

- * X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else?
- * X(3872) / ψ (2S) ratio versus N_{tracks} measured in pp collisions at $\sqrt{s} = 8$ TeV.
 - No significant <u>variation is observed</u> for the <u>non-</u> prompt component.
 - Hint of a relative suppression with event activity for prompt component.

- * X(3872) : exotic state still not understood.
 - Tetraquark / hadronic molecule / something else ?
- * X(3872) / ψ (2S) ratio versus N_{tracks} measured in pp collisions at $\sqrt{s} = 8$ TeV.
 - No significant <u>variation is observed</u> for the <u>non-</u> <u>prompt</u> component.
 - Hint of a relative suppression with event activity for prompt component.
- * Baseline for a future pPb analysis !

LHCb-FIGURE-2019-020 ²300 WeV/c² 250 LHCb Preliminary New pPb $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ converted photons 250 Events / (10 $1.5 < y^*_{\chi_c} < 4.0$ $-\chi_{c1}$ $-\chi_{c2}$ 100 $\chi_c \to \mu^+ \mu^- \gamma$ 300 350 400 450 500 550 $M(\mu^+\mu^-\gamma)-M(\mu^+\mu^-)$ [MeV/c²]

* χ_{c1} and χ_{c2} peaks **observed** in pPb/Pbp collisions with converted and non-converted photons.

Analysis ongoing, stay tuned !

LHCb physics program

Fixed-target mode samples

* Large variety of samples to study ! * **Two new samples** : PbNe at $\sqrt{s_{NN}} = 68.6$ GeV and PbPb at $\sqrt{s_{NN}} = 5.02$ TeV.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

<u>Collider mode samples</u>

~ 20 times 2015 luminosity

Studies in PbPb limited to 60% less central collisions.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Studies in PbPb limited to 60% less central collisions.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

LHCb Upgrade I 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2021 ••• Run 5 Run 4 LS4

LHC		Run 3	LS3
HL-LH	С		LS3
Upgrad	e Ia		Upgrade Ib

Upgrade II

LHCb detector : season 3 (2021)

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

New electronics for muon and calorimeter systems

[CERN-LHCC-2012-007]

- Upgrade based on pp collision • requirements :
 - Collision rate at 40 MHz.
 - Pile-up factor $\mu \approx 5$
- **Replace the entire tracking system.**
- * Full software trigger.
 - Remove L0 triggers.
 - Read out the full detector at 40 MHz.

Tracking system: Scintillating fibre tracker (SciFi)

- ~10000 km of scintillating fibres arranged in 6 layers with silicon photo-multipliers (SiPM) readout.
 - 3 stations.
 - 4 detection layers per station arranges in x-u-v-x configuration per stations.
 - 10 modules of 2x4 mats.

- * <u>No significant saturation</u> of the new LHCb detectors up to 30%!
- * Two proposals for a new tracker (see next slides):
 - →in 2024 → reach event more central collisions !
 - In 2030 → no more limitations !

EPPS16 nPDF prediction at NLO

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Luminosity :

*

- pPb : 500 nb⁻¹ (4 weeks)
- pp : 104 pb⁻¹ (much shorter time)

Drell-Yan production in pPb collisions.

- Forward rapidity : access shadowing region.
- Backward rapidity : access to EMC effect.
- Other studies in this document :
 - D_0 - $\overline{D_0}$ correlations.
 - B⁺ meson productions.
- **Projections show valuable inputs for** * nPDF fit with limited data taking periods.

LHCb fixed-target program evolution

Projection of ~1 year data taking

Int. Lumi.		80 pb-1
Sys.error of .	J/Ψ xsection	~3%
J/Ψ yi	eld	28 M
D^0 yi	eld	280 M
Λ_c yi	eld	2.8 M
Ψ' yi	eld	280 k
$\Upsilon(1S)$ yi	eld	24 k
$DY \mu^+\mu^-$ yi	eld	24 k

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

- **SMOG 2** (TDR): Standalone gas storage cell covering $z \in$ [-500;-300] mm :
- Up to x100 higher gas density with same gas flow of current SMOG.
- Gas feed system measures the **gas density with few** % accuracy.
- Possibility to run in parallel of pp collisions.

Installation due in December 2019, to be operational from the start of LHC Run 3.

Rapidity scan

Rapidity scan

Rapidity scan at 72 GeV with
 FT@LHCb can complement the
 RHIC beam energy scan.

Rapidity scan

FT@LHCb can complement the RHIC beam energy scan.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Deep in the hadronic structure

(access via angular modulation)

Rapidity scan

р 🎢

FT@LHCb can complement the **RHIC beam energy scan.**

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Deep in the hadronic structure

Rapidity scan

FT@LHCb can complement the RHIC beam energy scan.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

SMOG2@LHCb could probs nuclear PDFs, TMDs, GPDs at large Bjorken-x.

Deep in the hadronic structure

<u>Upgrade I:</u> - 2×10^{33} cm⁻² s⁻¹ - **Pile-up = 5**

b Upgrade II

EoI : CERN-LHCC-2017-003 Physics case : CERN-LHCC-2018-027

 Upgrade II:

 - $1.5 \times 10^{34} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1}$

 - Pile-up = 42

Phase in a nutshell

- * Sub detectors considering timing :
 - Before the magnet :
 - VELO, RICH1
 - After the magnet :
 - TORCH, RICH2, ECAL

Magnet Tracking Station

- * Proposal for tracking station inside the magnet.
 - Triangular Extruded Scintillating Bars
 - Increase coverage of low-p_T tracks.
 - Physics motivations : access to converted photons.
- * **Proposing the installation of a small prototype** inside the magnet during LSIII.

- * MIGHTY tracker : biggest silicon tracker built by LHCb.
 - Upgrade 1b: Inner Tracker + Scifi.
 - DMAPs technology for silicon sensors.
 - Upgrade II: New mighty silicon tracker covering larger area.
 - Rebuild of SciFi + reuse IT.
- * Hybrid technology detector, many challenges !
- First estimations show **no limitation in** centrality reach with the complete MIGHTY.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

19

- * LHCb physics program is expanding.
 - Many ongoing analysis in pPb collisions.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

• Two new datasets to explore : PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.

- * LHCb physics program is expanding.
 - Many ongoing analysis in pPb collisions.
 - Two new datasets to explore : PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.
- * LHCb's future is bright and full of opportunities !
 - New detector with new tracking/PID system driven by pp physics.
 - Improved fixed-target program with SMOG2.
 - Better performances expected for Run 3 in high-multiplicity collisions.

- * LHCb physics program is expanding.
 - Many ongoing analysis in pPb collisions.
 - Two new datasets to explore : PbPb at $\sqrt{s_{NN}} = 5$ TeV and PbNe at $\sqrt{s_{NN}} = 86$ GeV.
- * LHCb's future is bright and full of opportunities !
 - New detector with new tracking/PID system driven by pp physics.
 - Improved fixed-target program with SMOG2.
 - Better performances expected for Run 3 in high-multiplicity collisions.

Extended capabilities of the detector = expansion of the physics program !

Open and hidden charm production in pPb collisions

- * **Improved statistics** by factor 20 compared to previous LHCb results.

* Tension between data and nPDFs predictions. Additional effects required. Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

* Preliminary results for D⁰ cross-section in pPb/Pbp collisions at $\sqrt{s_{NN}} = 8$ TeV up to $p_T = 16$ GeV/c.

22

Open and hidden beauty production in pPb collisions

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Fixed-target results

Antiproton in pHe at $\sqrt{s_{NN}} = 110 \text{ GeV}$

- Antiproton cross-sections in pHe : key to constrain dark matter search in cosmic flux.
 - Data constrain extrapolations from pp to pHe cross-sections.
 - Data constrain empirical parameterization for scaling violation of cross-sections.

Benjamin Audurier - <u>benjamin.audurier@cern.ch</u>

Open-charm production in fixed-target LHCb acceptance : access to anti-shadowing and intrinsic charm content in the nucleons.

* **Precise** J/ψ and D^0 measurements in pHe.

Good agreement between data and theory with **no strong** intrinsic charm contribution observed.

Tracking system: Vertex Locator (VELO)

- * Silicon pixel detector, 41 M 55 x 55 μ m² pixels.
- * Closest pixels at 5.1 mm from the beam line.
- * Aluminium foil to protect the Velo without interfering with the beam.
- * Sensors to be kept $< -20^{\circ}$ C
- * **Total data rate** : 2.8 Tb/s

Tracking in LHCb

- * Many types of tracks in LHCb, the most important ones are
 - Long tracks.
 - Downstream tracks
- * Tracking steps :
 - Finding a track : Forward Tracking algorithm.
 - Combine VELO seeds with hits in the T-stations
 - Match VELO tracks and seeds from T-stations
 - Fitting a track : Kalman filter.

LHCb-INT-2019-006

TORCH - Low momentum PID

- * TORCH is a large area time of flight detector that is designed to provide PID in the GeV/c momentum range
 - Considered for use in Upgrade Ib.
 - Exploit prompt production of Cherenkov light in a quartz radiator plate to provide a fast timing signal.
 - Aim for a resolution of 10-15 ps per track
 - A large-scale prototype has been developed.
 - Test-beam ongoing
 - Good separation between between $\pi/K/p$ is possible in 2-10 GeV/c range.

Half-scale demonstrator

- Upgrade II VELO faces significant
 mechanical challenges
 - huge impact on the design and R&D.
- * Track timing will be crucial
 - PV timing and associations, displaced track trigger etc.
 - Difficult question to address that will impact the design.
 - Other issues : cooling, radiations ...

ELO

σ_z (lumi region) $\approx 45 \text{ mm}$ σ_t (lumi region) $\approx 190 \text{ ps}$

Typical B meson flight time ~15ps

Trigger scheme

Real Time Analysis (RTA)

