Partial Compositness from Partial Unification

By Giacomo Cacciapaglia, SV, Chen Zhang, arXiv:1911.05454 [hep-ph]

Outline

Motivation

• Set-up

• Mass generation for 3rd family

Mass generation for SM Fermions

• 2 representations for the HyperColor (HC) group

• 2 representations for the HyperColor (HC) group

• Walking Technicolor Confinement

• 2 representations for the HyperColor (HC) group

Walking Technicolor Confinement

Finite number of solutions

[Belyaev, A., Cacciapaglia, G., Cai, H. et al. J.

High Energ. Phys. (2017) 2017: 94.]

• 2 representations for the HyperColor (HC) group

Finite number of solutions

[Belyaev, A., Cacciapaglia, G., Cai, H. et al. J.

High Energ. Phys. (2017) 2017: 94.]

$G_{ m HC}$	ψ	χ	Restrictions	$-q_\chi/q_\psi$	Y_{χ}	Non Conformal	Model Name
	Real	Real	SU(5)/SO(5)	× SU(6)	SO(6)		
$SO(N_{ m HC})$	$5 \times S_2$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} \geq 55$	$\tfrac{5(N_{\mathrm{HC}}+2)}{6}$	1/3	/	
$SO(N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} \geq 15$	$\frac{5(N_{\rm HC}-2)}{6}$	1/3	/	
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{ m HC}=7.9$	$\frac{5}{6}$, $\frac{5}{12}$	1/3	$N_{ m HC}=7,9$	M1, M2
$SO(N_{ m HC})$	$5 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{ m HC}=7,9$	5, 5	2/3	$N_{ m HC}=7,9$	M3, M4
	Real	Pseudo-Real	SU(5)/SO(5) × SU(6)	/Sp(6)		
$Sp(2N_{ m HC})$	$5 \times \mathbf{Ad}$	$6 \times \mathbf{F}$	$2N_{\rm HC} \geq 12$	$\tfrac{5(N_{\rm HC}+1)}{3}$	1/3	/	
$Sp(2N_{ m HC})$	$5 \times \mathbf{A}_2$	$6 \times \mathbf{F}$	$2N_{\mathrm{HC}} \geq 4$	$\tfrac{5(N_{\mathrm{HC}}-1)}{3}$	1/3	$2N_{HC} = 4$	M5
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	6 × Spin	$N_{\mathrm{HC}} = 11,13$	$\frac{5}{24}$, $\frac{5}{48}$	1/3	/	
	Real	Complex	SU(5)/SO(5)	\times SU(3) ²	/SU(3)		
$SU(N_{ m HC})$	$5\times {\bf A}_2$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC}=4$	5 3	1/3	$N_{ m HC}=4$	M6
$SO(N_{ m HC})$	$5 \times \mathbf{F}$	$3 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$N_{\mathrm{HC}} = 10,14$	$\frac{5}{12}$, $\frac{5}{48}$	1/3	$N_{ m HC}=10$	M7
	Pseudo-Real	Real	SU(4)/Sp(4)	× SU(6)/	SO(6)		
$Sp(2N_{ m HC})$	$4\times \mathbf{F}$	$6 \times \mathbf{A}_2$	$2N_{\rm HC} \leq 36$	$\frac{1}{3(N_{\rm HC}-1)}$	2/3	$2N_{\rm HC}=4$	M8
$SO(N_{ m HC})$	$4 \times \mathbf{Spin}$	$6 \times \mathbf{F}$	$N_{\rm HC} = 11, 13$	$\frac{8}{3}$, $\frac{16}{3}$	2/3	$N_{ m HC}=11$	M9
	Complex	Real	$\mathrm{SU}(4)^2/\mathrm{SU}(4)$) × SU(6)	/SO(6)		
$SO(N_{ m HC})$	$4 \times (\mathbf{Spin}, \overline{\mathbf{Spin}})$	$6 \times \mathbf{F}$	$N_{\mathrm{HC}} = 10$	8 3	2/3	$N_{\rm HC} = 10$	M10
$SU(N_{ m HC})$	$4\times (\mathbf{F},\overline{\mathbf{F}})$	$6 \times \mathbf{A}_2$	$N_{ m HC}=4$	2 3	2/3	$N_{ m HC}=4$	M11
	Complex	Complex	$SU(4)^2/SU(4)$	× SU(3)2	/SU(3)		
$SU(N_{ m HC})$	$4\times (\mathbf{F},\overline{\mathbf{F}})$	$3\times (\mathbf{A}_2,\overline{\mathbf{A}}_2)$	$N_{ m HC} \geq 5$	$\frac{4}{3(N_{\rm HC}-2)}$	2/3	$N_{ m HC}=5$	M12
$SU(N_{ m HC})$	$4\times (\mathbf{F},\overline{\mathbf{F}})$	$3 \times (S_2, \overline{S}_2)$	$N_{ m HC} \geq 5$	$\tfrac{4}{3(N_{\rm HC}+2)}$	2/3	/	
$SU(N_{ m HC})$	$4 \times (\mathbf{A}_2, \overline{\mathbf{A}}_2)$	$3 \times (\mathbf{F}, \overline{\mathbf{F}})$	$N_{ m HC} = 5$	4	2/3	/	

• Top Yukawa coupling \Rightarrow Large anomalous dimension Push the scale $\Lambda_{\scriptscriptstyle \rm F}$

• UV complete the 4-Fermion Interaction (4-F)

• Top Yukawa coupling \Rightarrow Large anomalous dimension Push the scale $\Lambda_{\scriptscriptstyle \rm F}$

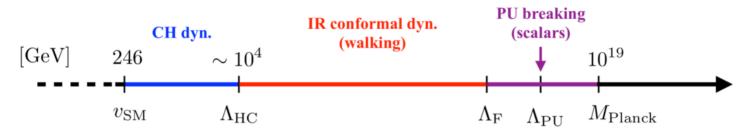
• UV complete the 4-Fermion Interaction (4-F)

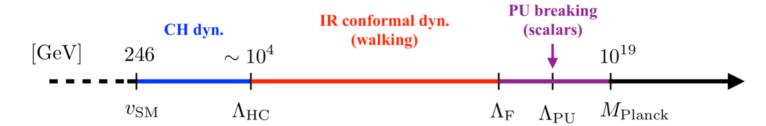
• Top Yukawa coupling \Rightarrow Large anomalous dimension Push the scale $\Lambda_{\scriptscriptstyle F}$

• UV complete the 4-Fermion Interaction (4-F)

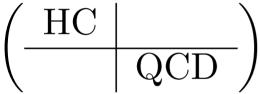
PU

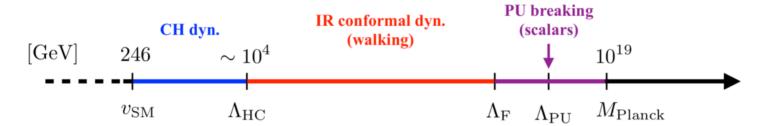
- We partially unify HC and SM
- High scale Scalar to break the gauge group
- 4-F are generated automatically





Extended HyperColor Group



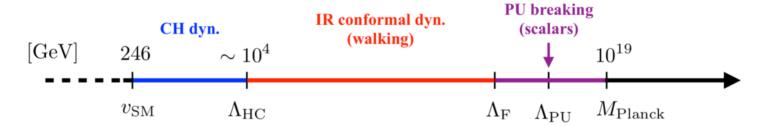


Extended HyperColor Group

$$\left(\begin{array}{c|c} HC & \\\hline & QCD \end{array}\right)$$

$$Sp(4)_{HC}$$

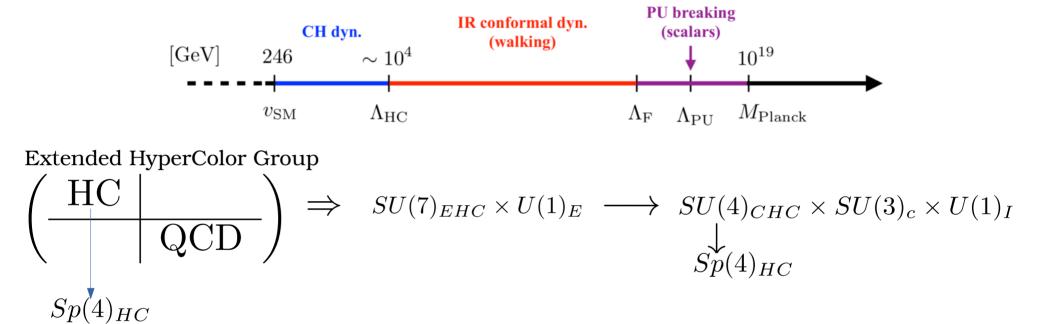
M8 with at least 4 F and 6 A \Rightarrow Global Symmetry Pattern SU(4)/Sp(4)



Extended HyperColor Group

$$\begin{pmatrix}
HC & \Rightarrow SU(7)_{EHC} \times U(1)_{E} & \longrightarrow SU(4)_{CHC} \times SU(3)_{c} \times U(1)_{I} \\
\downarrow & \downarrow \\
Sp(4)_{HC}
\end{pmatrix}$$

M8 with at least 4 F and 6 A \Rightarrow Global Symmetry Pattern SU(4)/Sp(4)



M8 with at least 4 F and 6 A \Rightarrow Global Symmetry Pattern SU(4)/Sp(4)

• Lepton-qark unification : Techni Pati-Salam (TPS)

(TPS) $SU(8)_{PS} \times SU(2)_R \times SU(2)_L$

$$SU(8)_{PS} \times SU(2)_R \times SU(2)_L$$

Step	Breaking Pattern				
PS	$SU(8)_{PS} \times SU(2)_R \to SU(7)_{EHC} \times U(1)_E$				
EHC	$SU(7)_{EHC} \rightarrow SU(4)_{CHC} \times SU(3)_c \times U(1)_X$				
CHC	$SU(4)_{CHC} \times U(1)_X \times U(1)_E \to Sp(4)_{HC} \times U(1)_Y$				

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \left(egin{array}{c} L^p_{u/d} \ q^p_L \ l^p_L \end{array} ight)$	8	1	2

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p & \\ q_L^p \\ l_L^p \end{pmatrix}^{(4,1)_0}$	8	1	2

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p \\ q_L^p \\ l_L^p \end{pmatrix} (4,1)_0$	8	1	2
$ \Upsilon^p = \begin{pmatrix} U_d & D_u \\ d_R^{c p} & u_R^{c p} \\ e_R^{c p} & \nu_R^{c p} \end{pmatrix} $	8	2	1

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p \\ q_L^p \\ l_L^p \end{pmatrix}^{(4,1)_0}$	8	1	2
$\Upsilon^p = \begin{pmatrix} U_d & D_u \\ d_R^{c p} & u_R^{c p} \\ e_R^{c p} & \nu_R^{c p} \end{pmatrix}^{(4,1)_{\pm 1/2}}$	8	2	1

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p & \\ q_L^p \\ l_L^p \end{pmatrix} (4,1)_0$	8	1	2
$\Upsilon^{p} = \begin{pmatrix} U_{d} & D_{u} \\ d_{R}^{c p} & u_{R}^{c p} \\ e_{R}^{c p} & \nu_{R}^{c p} \end{pmatrix}^{(4,1)_{\pm 1/2}}$	8	2	1
$\Xi = \left(egin{array}{cccc} U_u & \chi & ho & \eta & \omega \ D_d & ilde{\chi} & ilde{ ho} & ilde{\eta} & ilde{\omega} \end{array} ight)$ *	$70 = A_4$	1	1

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p & \searrow (4,1)_0 \\ q_L^p & \end{pmatrix}$	8	1	2
$\Upsilon^{p} = \begin{pmatrix} U_{d} & D_{u} \\ d_{R}^{c p} & u_{R}^{c p} \\ e_{R}^{c p} & \nu_{R}^{c p} \end{pmatrix}^{(4,1)_{\pm 1/2}}$	8	2	1
$\Xi = \left(egin{array}{cccc} U_u & \chi & ho & \eta & \omega \ D_d & ilde{\chi} & ilde{ ho} & ilde{\eta} & ilde{\omega} \end{array} ight)$	$70 = A_4$	1	1

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \begin{pmatrix} L_{u/d}^p \\ q_L^p \\ l_L^p \end{pmatrix} (4,1)_0$	8	1	2
$\Upsilon^p = \begin{pmatrix} U_d & D_u \\ d_R^{c p} & u_R^{c p} \\ e_R^{c p} & \nu_R^{c p} \end{pmatrix}^{(4,1)_{\pm 1/2}}$	8	2	1
$\Xi = \left(egin{array}{cccc} U_u & \chi & ho & \eta & \omega \ D_d & \widetilde{\chi} & \widetilde{ ho} & \widetilde{\eta} & \widetilde{\omega} \end{array} ight)$	$70 = A_4$	1	1
N^p	1	1	1

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \left(egin{array}{c} L_{oldsymbol{u}/oldsymbol{d}}^p \ q_L^p \ l_L^p \end{array} ight)$	8	1	2
$\Upsilon^p = \begin{pmatrix} \frac{\boldsymbol{U_d}}{d_R^{c p}} & \frac{\boldsymbol{D_u}}{u_R^{c p}} \\ d_R^{c p} & u_R^{c p} \\ e_R^{c p} & \nu_R^{c p} \end{pmatrix}$	8	2	1
$\Xi = \left(egin{array}{cccc} oldsymbol{U_u} & \chi & ho & oldsymbol{\eta} & \omega \ oldsymbol{D_d} & ilde{\chi} & ilde{ ho} & oldsymbol{ ilde{\eta}} & ilde{\omega} \end{array} ight)$	$70 = A_4$	1	1
N^p	1	1	1

Scalar Content

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$	vev
Φ	8	2	1	v_{PS}^{Φ}
$\overline{\Delta}$	A_3	2	1	$v_{EB}^{\Delta} v_{CB}^{\Delta}$
$\overline{\Psi}$	Adj	1	1	v_{EB}^{Ψ}
$\overline{\Theta}$	A_2	1	1	v_{CB}^{Θ}

Scalar Content

_		$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$	vev
	Φ	8	2	1	v_{PS}^{Φ}
_	Δ	A_3	2	1	v_{EB}^{Δ} v_{CB}^{Δ}
_	Ψ	Adj	1	1	$v_{EB}^{\Psi} \rightarrow \text{Break}$ Baryon Number
	Θ	A_2	1	1	v_{CB}^{Θ}

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge

Kinetic

Yukawa

Potential

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge

Kinetic

Yukawa

Potential

- Minimize $\mathcal{L}_V \Rightarrow$ PS, EHC and CHC breaking
- $M_{\rm scalars}$ and $\Lambda_{CHC} \ge 10^{16} GeV$

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge

Kinetic

Yukawa

Potential

- Minimize $\mathcal{L}_V \Rightarrow$ PS, EHC and CHC breaking
- $M_{\rm scalars}$ and $\Lambda_{CHC} > 10^{16} GeV$

$$\mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\eta}\bar{\sigma}_{\mu}\chi)}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}U_{u})} \\ - \mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{D}_{d}\bar{\sigma}_{\mu}\tilde{\chi})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})} \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau_{R}}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau_{R}}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi})}$$

$$\mathcal{L} = \mathcal{L}_G + \mathcal{L}_F + \mathcal{L}_S + \mathcal{L}_Y + \mathcal{L}_V$$
 \downarrow
Gauge

G

- Minimize $\mathcal{L}_V \Rightarrow$ PS, EHC and CHC breaking
- $M_{\rm scalars}$ and $\Lambda_{CHC} > 10^{16} GeV$

$$\mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\eta}\bar{\sigma}_{\mu}\chi)}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{U}_{u}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}U_{u})} \\ \mathcal{L}_{F} \supset \frac{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}D_{d}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{D}_{d}\bar{\sigma}_{\mu}\tilde{\chi})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}t_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}b_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi}), (\bar{L}\bar{\sigma}^{\mu}q_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})} \\ (\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau_{R}}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\eta}\bar{\sigma}_{\mu}\chi), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\chi}\bar{\sigma}_{\mu}\tilde{\eta})}{(\bar{D}_{u}^{3}\bar{\sigma}^{\mu}\nu_{\tau_{R}}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{U}_{d}^{3}\bar{\sigma}^{\mu}\tau_{R}^{c})(\bar{\chi}\bar{\sigma}_{\mu}\eta), (\bar{L}\bar{\sigma}^{\mu}l_{L})(\bar{\eta}\bar{\sigma}_{\mu}\tilde{\chi})}$$

4F for **entire** 3^{rd} family quark $\rightsquigarrow (4,3)_{1/6}$ (*EHC*) lepton $\rightsquigarrow (4,1)_{1/2}$ (*PS*)

$$\mathcal{L}_Y = -\mu_N N N - \lambda_{\Phi} \Upsilon \Phi N - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi} \Xi \Psi \Xi - \lambda_{\Theta L} \Omega \Theta^* \Omega - \lambda_{\Theta R} \Upsilon \Theta \Upsilon - \lambda_{\Delta} \Upsilon \Delta \Xi + \text{c.c.}$$

$\mathcal{L}_Y = -\mu_N NN - \lambda_{\Phi} \Upsilon \Phi N - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi} \Xi \Psi \Xi$
$-\lambda_{\Theta L}\Omega\Theta^*\Omega - \lambda_{\Theta R}\Upsilon\Theta\Upsilon - \lambda_{\Delta}\Upsilon\Delta\Xi + c.c.$

Term	1 SM Field	0 SM Field
ΞΨΞ	None	$\chi\eta \Rightarrow (4,1)_{-1/2} \tilde{\chi}\tilde{\eta} \Rightarrow (4,1)_{1/2}$ $U_t D_b \Rightarrow (5,1)_0, \chi\tilde{\eta} \Rightarrow (4,\overline{3})_{-1/6},$ $U_t \tilde{\chi} \Rightarrow (4,\overline{3})_{-1/6}, \eta\tilde{\chi} \Rightarrow (4,3)_{1/6},$ $\chi D_b \Rightarrow (4,3)_{1/6}, \eta\tilde{\eta} \Rightarrow (5,1)_0.$
ΩΘ*Ω	$Lq_L \Rightarrow (4,3)_{1/6}, Ll_L \Rightarrow (4,1)_{-1/2}.$	$LL \Rightarrow (5, 1)_0$
ΥΘΥ	$U_b t_R^c \Rightarrow (4, \overline{3})_{-1/6}, U_b v_{\tau R}^c \Rightarrow (4, 1)_{1/2},$ $D_t b_R^c \Rightarrow (4, \overline{3})_{-1/6}, D_t \tau_R^c \Rightarrow (4, 1)_{1/2}.$	$U_b D_t \Rightarrow (5, 1)_0$
ΥΔΞ	$ \chi b_{R}^{c} \Rightarrow (5,1)_{0}, \chi t_{R}^{c} \Rightarrow (5,1)_{-1}, \\ \eta b_{R}^{c} \Rightarrow (4,3)_{1/6}, \eta t_{R}^{c} \Rightarrow (4,3)_{-5/6}, \\ D_{b} b_{R}^{c} \Rightarrow (4,\overline{3})_{5/6}, D_{b} t_{R}^{c} \Rightarrow (4,\overline{3})_{-1/6}, \\ \tilde{\chi} b_{R}^{c} \Rightarrow (5,3)_{2/3}, \tilde{\chi} t_{R}^{c} \Rightarrow (5,3)_{-1/3}, \\ \tilde{\eta} b_{R}^{c} \Rightarrow (4,1)_{1/2}, \tilde{\eta} t_{R}^{c} \Rightarrow (4,1)_{-1/2}, \\ U_{t} \tau_{R}^{c} \Rightarrow (4,1)_{1/2}, U_{t} V_{\tau R}^{c} \Rightarrow (4,1)_{-1/2}, \\ \chi \tau_{R}^{c} \Rightarrow (5,3)_{2/3}, \chi V_{\tau R}^{c} \Rightarrow (5,3)_{-1/3}, \\ \eta \tau_{R}^{c} \Rightarrow (4,\overline{3})_{5/6}, \eta V_{\tau R}^{c} \Rightarrow (4,\overline{3})_{-1/6}. $	$U_{t}U_{b} \Rightarrow (5,1)_{0}, U_{t}D_{t} \Rightarrow (5,1)_{-1},$ $\chi U_{b} \Rightarrow (4,3)_{1/6}, \chi D_{t} \Rightarrow (4,3)_{-5/6},$ $\tilde{\chi} U_{b} \Rightarrow (4,\overline{3})_{5/6}, \tilde{\chi} D_{t} \Rightarrow (4,\overline{3})_{-1/6},$ $\tilde{\eta} U_{b} \Rightarrow (5,3)_{2/3}. \tilde{\eta} D_{t} \Rightarrow (5,3)_{-1/3}.$

HyperFermion Mass

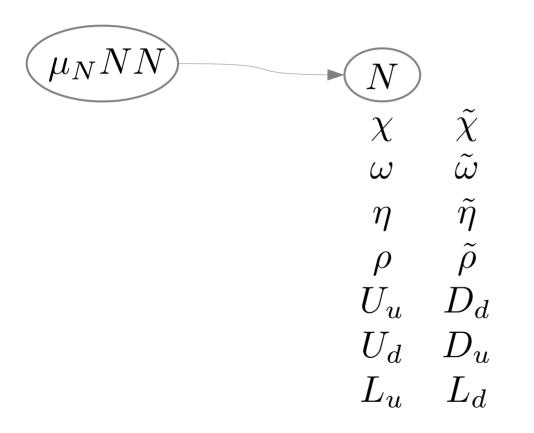
• Relevant for **HyperColor Dynamic**, low energy **symmetry breaking pattern**

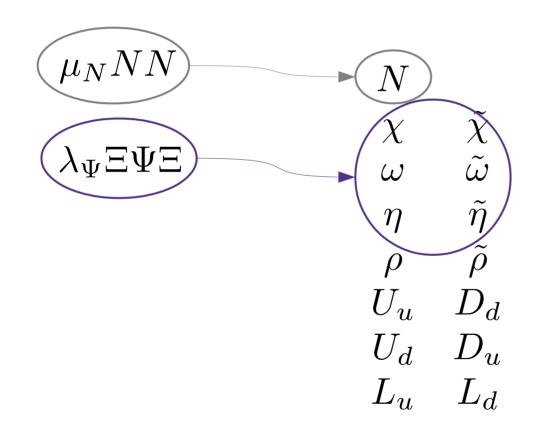
HyperFermion Mass

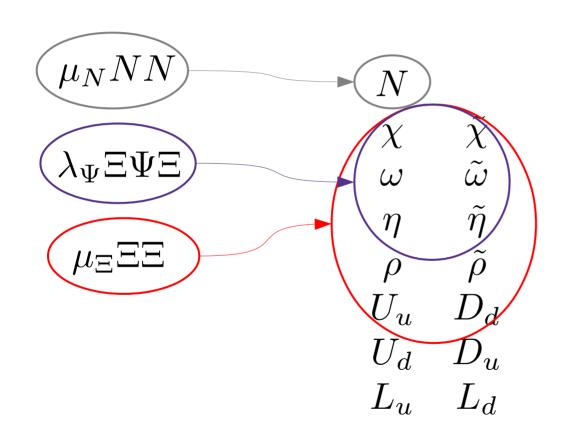
• Relevant for **HyperColor Dynamic**, low energy **symmetry breaking pattern**

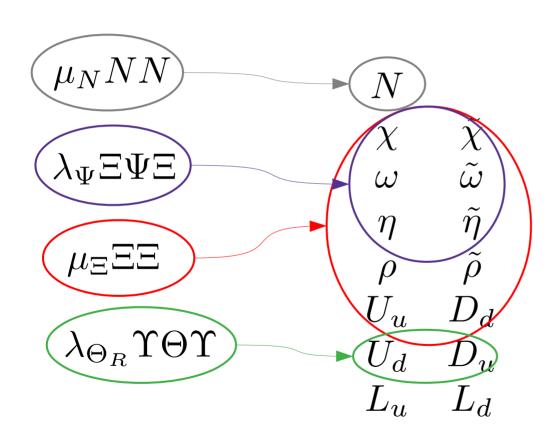
HyperFermion Mass

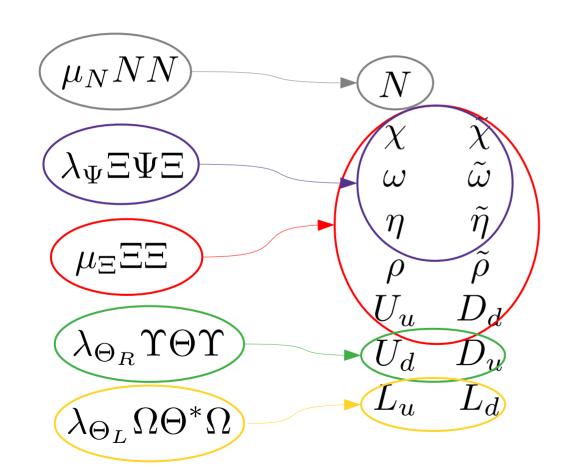
• Relevant for **HyperColor Dynamic**, low energy **symmetry breaking pattern**

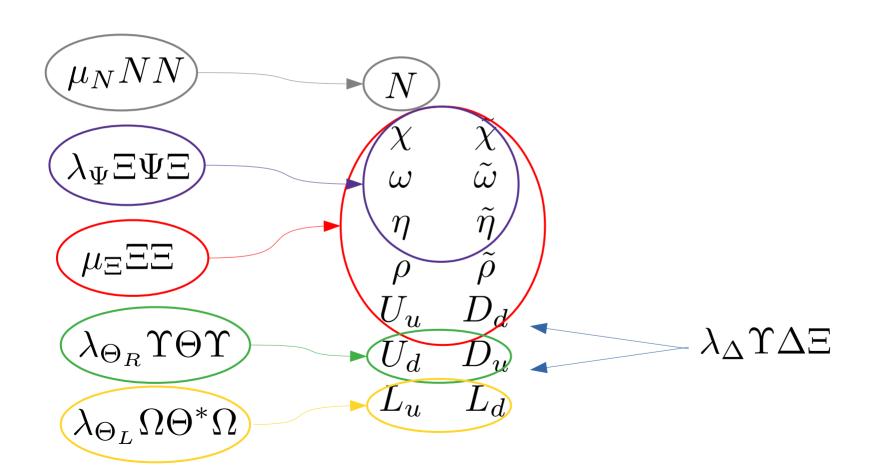


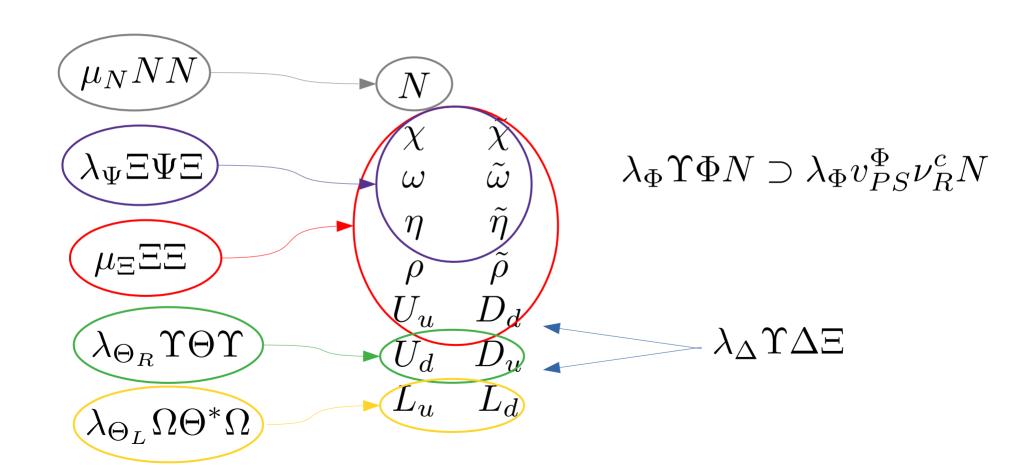












$$M_{\chi \tilde{\chi}} = M_{\omega \tilde{\omega}} = a\mu_{\Xi} - b\lambda_{\Psi}v^{\Psi} \leq \Lambda_{HC}$$

$$M_{\eta \tilde{\eta}} = a\mu_{\Xi} + \frac{2b}{5}\lambda_{\Psi}v^{\Psi} \leq \mathcal{O}(10)\Lambda_{HC}$$

$$M_{\rho \tilde{\rho}} = a\mu_{\Xi}$$

$$M_{L_u L_d} = 2 \lambda_{\Theta_L} v_{CB}^{\Theta} \leq \Lambda_{HC}$$

Constraints on the coefficient ! $|\mu_{\Xi}| \le \alpha M_{\chi} + \beta M_{\eta}$ $\le \Lambda_{HC} \le \mathcal{O}(10)\Lambda_{HC}$

Constraints on the coefficient !
$$|\mu_{\Xi}| \le \alpha M_{\chi} + \beta M_{\eta}$$
 $\le \Lambda_{HC} \le \mathcal{O}(10)\Lambda_{HC}$

$$(U_{d} \quad D_{d}) \begin{pmatrix} \propto \lambda_{\Theta_{R}} v_{CB}^{\Theta} & \propto \lambda_{\Delta} v_{CB}^{\Delta} \\ \propto \lambda_{\Delta} v_{EB}^{\Delta} & \propto \mu_{\Xi} \end{pmatrix} \begin{pmatrix} D_{u} \\ U_{u} \end{pmatrix}$$

$$(F_{d} \quad G_{d}) \begin{pmatrix} M_{F} \\ M_{G} \end{pmatrix} \begin{pmatrix} F_{u} \\ G_{u} \end{pmatrix}$$
 With $M_{F} \leq M_{G}$

Constraints on the coefficient ! $|\mu_{\Xi}| \le \alpha M_{\chi} + \beta M_{\eta}$ $< \Lambda_{HC} \le \mathcal{O}(10)\Lambda_{HC}$

$$(U_d \quad D_d) \begin{pmatrix} \propto \lambda_{\Theta_R} v_{CB}^{\Theta} & \propto \lambda_{\Delta} v_{CB}^{\Delta} \\ \propto \lambda_{\Delta} v_{EB}^{\Delta} & \propto \mu_{\Xi} \end{pmatrix} \begin{pmatrix} D_u \\ U_u \end{pmatrix}$$

$$(F_d \quad G_d) \begin{pmatrix} M_F & & \\ & M_G \end{pmatrix} \begin{pmatrix} F_u \\ G_u \end{pmatrix} \quad \text{With} \quad M_F \leq M_G$$

We must assume $M_F \leq \Lambda_{HC}$

If $M_G \leq \Lambda_{HC}$ we have SU(6)/Sp(6) else SU(4)/Sp(4)

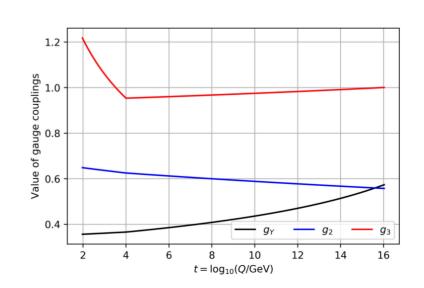
HyperColor Dynamic

- $6 \text{ A} \times \text{N}_1 \text{ F}$ weyl fermions under HC, Asymptotic Freedom if $\text{N}_1 < 20$
- We want a Strongly coupled near Conformal Regime $[\Lambda_{HC},\Lambda_{CHC}]$

lower limit for the Conformal Window

$$N_1$$
=10 Schwinger-Dyson
 N_1 =4 Pica-Sannino

• In the TPS $N_1 = 10/12$



SM Mass Feature

In the SM
$$\frac{m_t}{m_b} \cong 60$$

→ Different running 4F-Operator / Scalar Mediation

$$m_{\tau} < m_t$$

- → Massive gauge bosons mediators
- ightarrow 4-F $\,\supset\eta$, if $M_{\eta}>\Lambda_{HC}$ there is a suppression

What about neutrinos?

$$\left(\nu_{L} \quad \nu_{R}^{c} \quad N \quad \rho \quad \tilde{\rho} \right) \left(\begin{array}{ccccc} 0 & \sim m_{\tau} & 0 & 0 & 0 \\ \sim m_{\tau} & 0 & \lambda_{\Phi} v^{\Phi} & \propto \lambda_{\Delta} v_{EB}^{\Delta} & 0 \\ \lambda_{\Phi} v^{\Phi} & 0 & \mu_{N} & 0 & 0 \\ 0 & \propto \lambda_{\Delta} v_{EB}^{\Delta} & 0 & 0 & \mu_{\Xi} \\ 0 & 0 & 0 & \mu_{\Xi} & 0 \end{array} \right) \left(\begin{array}{c} \nu_{L} \\ \nu_{R}^{c} \\ N \\ \rho \\ \tilde{\rho} \end{array} \right)$$

If $\lambda_{\Delta} v^{\Delta} \to 0$ and $\mu_N \ll \lambda_{\Phi} v^{\Phi}$ we have an inverse seesaw

To Summarize

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the entire family
- Mass Hierarchy between the fermions
- Large window to get a **Conformal Dynamic**

To Summarize

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the entire family
- Mass Hierarchy between the fermions
- Large window to get a **Conformal Dynamic**

How can we generalize that for the 3 families?

To Summarize

- UV completed the 4F (with scalars and gauge bosons)
- Generate mass for the entire family
- Mass Hierarchy between the fermions
- Large window to get a **Conformal Dynamic**

How can we generalize that for the 3 families?

Fermion Content

Notation: $(4,3)_{1/6} \Rightarrow (Sp(4), SU(3)_c)_{U(1)_Y}$

	$SU(8)_{PS}$	$SU(2)_R$	$SU(2)_L$
$\Omega^p = \left(egin{array}{c} L_{u/d}^p \ q_L^p \ l_L^p \end{array} ight)$	8	1	2
$\Upsilon^p = \left(egin{array}{ccc} oldsymbol{U_d^p} & oldsymbol{D_u^p} \ d_R^{c\ p} & u_R^{c\ p} \ e_R^{c\ p} & u_R^{c\ p} \end{array} ight)$	8	2	1
$\Xi = \left(egin{array}{cccc} oldsymbol{U_u} & \chi & ho & oldsymbol{\eta} & \omega \ D_d & ilde{\chi} & ilde{ ho} & ilde{oldsymbol{\eta}} & ilde{\omega} \end{array} ight)$	$70 = A_4$	1	1
N^p	1	1	1

$$\mathcal{L}_{\text{Yuk}} = -\mu_N^{pq} N^p N^q - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi}^{\alpha} \Xi \Psi^{\alpha} \Xi$$
$$- (\lambda_{\Phi}^{pq} \Upsilon^p \Phi N^q + \lambda_{\Theta L}^{pq,\alpha} \Omega^p \Theta^{\alpha *} \Omega^q + \lambda_{\Theta R}^{pq,\alpha} \Upsilon^p \Theta^{\alpha} \Upsilon^q$$
$$+ \lambda_{\Delta R}^p \Upsilon^p \Delta_R^* \Xi + \lambda_{\Delta L}^p \Omega^p \Delta_L \Xi + \text{h.c.})$$

$$\mathcal{L}_{\text{Yuk}} = -\mu_N^{pq} N^p N^q - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi}^{\alpha} \Xi \Psi^{\alpha} \Xi$$
$$- (\lambda_{\Phi}^{pq} \Upsilon^p \Phi N^q + \lambda_{\Theta L}^{pq,\alpha} \Omega^p \Theta^{\alpha *} \Omega^q + \lambda_{\Theta R}^{pq,\alpha} \Upsilon^p \Theta^{\alpha} \Upsilon^q$$
$$+ \lambda_{\Delta R}^p \Upsilon^p \Delta_R^* \Xi + \lambda_{\Delta L}^p \Omega^p \Delta_L \Xi + \text{h.c.})$$

Diagonalize μ^{pq} $\lambda^{pq}_{\Theta_{L/R}}$ to get L^p, U^p_d, D^p_u as mass eigenstates

$$\mathcal{L}_{\text{Yuk}} = -\mu_N^{pq} N^p N^q - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi}^{\alpha} \Xi \Psi^{\alpha} \Xi$$
$$- (\lambda_{\Phi}^{pq} \Upsilon^p \Phi N^q + \lambda_{\Theta L}^{pq,\alpha} \Omega^p \Theta^{\alpha *} \Omega^q + \lambda_{\Theta R}^{pq,\alpha} \Upsilon^p \Theta^{\alpha} \Upsilon^q$$
$$+ \lambda_{\Delta R}^p \Upsilon^p \Delta_R^* \Xi + \lambda_{\Delta L}^p \Omega^p \Delta_L \Xi + \text{h.c.})$$

Diagonalize μ^{pq} $\lambda_{\Theta_{L/R}}^{pq}$ to get L^p, U_d^p, D_u^p as mass eigenstates

To keep **AF** and the **CF** window $\sim \Lambda_{CHC} = 10^{16} GeV$

$$\mathcal{L}_{\text{Yuk}} = -\mu_N^{pq} N^p N^q - \mu_{\Xi} \Xi \Xi - \lambda_{\Psi}^{\alpha} \Xi \Psi^{\alpha} \Xi$$
$$- (\lambda_{\Phi}^{pq} \Upsilon^p \Phi N^q + \lambda_{\Theta L}^{pq,\alpha} \Omega^p \Theta^{\alpha *} \Omega^q + \lambda_{\Theta R}^{pq,\alpha} \Upsilon^p \Theta^{\alpha} \Upsilon^q$$
$$+ \lambda_{\Delta R}^p \Upsilon^p \Delta_R^* \Xi + \lambda_{\Delta L}^p \Omega^p \Delta_L \Xi + \text{h.c.})$$

Diagonalize μ^{pq} $\lambda_{\Theta_{L/R}}^{pq}$ to get L^p, U_d^p, D_u^p as mass eigenstates

To keep **AF** and the **CF** window $\sim \Lambda_{CHC} = 10^{16} GeV$

New Θ field is necessary $\Longrightarrow 1^{st} \& 2^{nd}$ to feel EWSB

Can we give mass to 3 generations?

$$\begin{pmatrix} \langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\ \langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\ \langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle \end{pmatrix}$$
need to be rank 3

Can we give mass to 3 generations?

$$\begin{pmatrix}
\langle O_{R1}O_{L1} \rangle & \langle O_{R1}O_{L2} \rangle & \langle O_{R1}O_{L3} \rangle \\
\langle O_{R2}O_{L1} \rangle & \langle O_{R2}O_{L2} \rangle & \langle O_{R2}O_{L3} \rangle \\
\langle O_{R3}O_{L1} \rangle & \langle O_{R3}O_{L2} \rangle & \langle O_{R3}O_{L3} \rangle
\end{pmatrix}$$
need to be rank 3

Gauge and Scalar mediation is not enough

$$\Rightarrow$$
 New Δ $(SU(2)_L)$

What is next?

- To study the potential in details (U(1)) violation
- Compute the anomaly dimension