Stanislav Babak. AstroParticule et Cosmologie, CNRS (Paris)

LISA: listening to the Universe from space

Annecy, 12-13 November

GW landscape

Laser Interferometer Space Antenna (LISA)

- LISA: GW observatory in space. Launch data 2032-2034
- LISAPathfinder Technology mission to demonstrate technical readiness of LISA - one of the most successful ESA mission.

What is special about LISA data

 GW signals are long lived (monts-years) and strong
LISA data will contain thousands of GW signals simultaneously present in the data (overlapping in time and in frequency). We need to separate and characterize each signal.

France leadership/coordination in LISA consortium

LISA time line

lisa

June 2017: Selection of LISA as L3 with anticipated launch at 2034

May 2018: Phase A kick-off

2018 – 2020 Mission Phase A

spring 2020: Formulation review (end of Phase A)

>2020: Mission Phase B1

2023: Mission Adoption

>2024: Mission Implementation (Phase B2/C/D)

<2034: Launch

Director of science @ESA has explicitly said that he wants LISA (together with ATHENA) in 2032

>Launch: 6.5 years operation (with potential extension)

Pre-merger e/m signal

X-ray emission during the late stages of the inspiral (days to hours before final merger) comes from:

- Circumbinary disc:
 - X-ray emission in soft x-rays (<1keV)
- Mini-discs around black holes
 - Hard x-ray emission (>10keV) from accretion of minidiscs individually onto each black hole
- Interaction of circumbinary and mini discs:
 - Accretion of circumbinary disc onto mini-discs via optically thick streams
 - Thermal radiation dominated by the inner edge of thecircumbinary disc, producing soft x-rays (~2keV)
- X-ray emission shows clear modulation on timescales as short as a few hours

