Core collapse supernova, r-process nucleosynthesis, gravitational waves & neutrinos astrophysics

Propositions:

- "Understanding the core collapse supernova explosion mechanism with gravitational waves", Marie Anne Bizouard (ARTEMIS)
- "Neutrinos Astrophysics: from core-collapse supernovae and kilonovae to the discovery of the diffuse supernova neutrino background", Cristina Volpe (APC)
- "Detecting low-energy transient neutrino signals with KM3NeT", Gwenhael de Wasseige (APC)

Labs involved: APC, ARTEMIS, CEA/AIM, CPPM, IAP, IPHC, LAL, LAPTH, LAPP, LLR, LUTH, Subatech

Journées de prospectives nationales IN2P3/GT04, Annecy 12-13 november 2019

The key questions of these 3 proposals

- NS are the result of the collapse of a 9-30 solar mass star but the CCSN explosion mechanism is still an open question. GWs are a unique probe to witness the dynamics of the collapse.
- Low-energy neutrinos are playing a key role in CCSN and BNS mergers/r-process nucleosynthesis.
- Can we detect the diffuse supernova neutrino background ?
 - This is a domain where observations are needed.
 - Pb: CCSN and kilonovae are rare events → third generation GW detectors are mandatory.

This is a domain where theory developments are also mandatory to help observations and interpretation.

- Pb: turbulent environment and many micro-physics ingredients including neutrinos interactions play a role in neutrino transport and flavor evolution..

CCSN facts and open questions?

Credit: NASA Spitzer Space Telescope (red) / Hubble Space Telescope (yellow) / Chandra X-ray Observatory (green and blue)

- ~ (30 yr)-1 per galaxy
- ~ tens every second in the observable universe
- Peak luminosity $\sim 10^{10} L_{\odot}$
- 10⁴⁶ erg gravitational waves
- 10⁴⁸ erg EM radiation
- 10⁵¹ erg kinetic energy
- 10⁵³ erg neutrinos
- Is the delayed neutrino mechanism responsible for the majority of CCSNe, or is there something missing? What is the role of rotation?
- Which stars explode and which stars do not?
- How can we use neutrino and gravitational wave observations to learn about the CCSN explosion engine?

Neutrino-driven CCSN explosion mechanism

Figure credit : A. Mezzacappa

1. Trapped neutrinos diffuse out $(\tau_{v-diff} >> 1)$ of the opaque PNS

2. Neutrinos heat matter in semi-transparant $(\tau_{v-diff} \sim 1)$ post-shock region and drive convective flow in hot bubble region between gain radius and shock 3. Neutrinos stream freely $(\tau_{v-diff} << 1)$ through transparent stellar envelope.

Additional key ingredients for explosion :

- Nuclear burning.
 - Standing accretion shock instability (SASI) is an instability of the shock wave itself. SASI aids the explosion and determines the asphericity.
- Recent breakthrough in (2D-3D) numerical simulations : almost all codes observe the same « signatures », but still not yet a complete code that includes all ingredients.
- In case of initial rotation, clear bounce signal.

Why we need more precise simulation?

-30

-40

-50

-60

-70

2000 1750 1250 0 1000 750 500 250 0 0.4 0.6 0.8 1.0 1.2

The GW signal is extremely complex and stochastic in nature, but there are common Features such that PNS excitation modes, SASI, convection ...

The CCSN GW detection panorama in the next 10 years

- Advanced LIGO / advanced Virgo / KAGRA: 2 types of searches:
 - All-sky/ all-time searches (silent supernova)
 - Targeted searches (neutrino & optical alerts):
 - false alarm rate reduced,
 - a short on source window allows to use signal extraction methods that are computing time limited (Bayesian methods using CCSN waveforms or simplified models).

- Source parameter estimation :
 - Agnostic waveform reconstruction using the coherence of the GW polarizations in 2 or more GW detectors data.
 - Identify some of the (loudest) features expected in the different phases : rotation at bounce, quiessence phase, SASI, PNS oscillation modes, ...
 - Determine the explosion mechanism : neutrinos or MHD.
 - Constrain EOS, progenitor mass, ...6

The CCSN GW detection panorama in the next 10 years

- 3rd generation of GW detectors: Eintsein Telescope (Europe) and Cosmic Explorer (US): proposed, not yet founded. See roadmap next slide
- 3G detector science case document release in July 2019: https://gwic.ligo.org/3Gsubcomm/docu ments/science-case.pdf

	Yakunin 2017	Mueller 2012			Kuroda 2016	
	C15	L15-3	N20-3	W15-1	SFHX	TM1
ET-D	54	12	4	6	24	18
CE	129	26	11	11.5	51	37
aLIGO	5.9	1.3	0.4	0.6	2.7	2.0

Gain of a factor 10 in sensitivity/distance

Table 4.1: Matched-filter SNRs of six 3D neutrino-driven explosion simulations for a source located at 100 kpc recorded in 1) the Einstein Telescope (ET-D), 2) the Cosmic Explorer (CE), and 3) and advanced LIGO at design sensitivity (aLIGO) are provided here. The matched-filter SNRs do not include a detector's antenna function.

The CCSN neutrinos detection panorama in the next 10 years

- PNS oscillation frequencies and damping times are directly affected by the highdensity EOS as well as the neutrino emission.
- Neutrino cooling and deleptonization determine the thermal structure of the PNS and its rate of contraction, setting the rate at which the dominant f-mode frequency increases.
- To observe this phenomena, one will need high-resolution neutrino "light curve" data obtained from a galactic supernova via underground neutrino detectors that should be available at the horizon of 2030: Super-K/Hyper-K, DUNE, JUNO, IceCube, LVD, Borexino, KamLAND.
- SNEWS (Super-K, LVD, IceCube, KamLand, Borexino, Daya Bay, HALO, KM3NeT): 5-sigma neutrino CCSN alert system.
- French groups involved in KM3NeT that is sensitive to CCSN neutrinos.

3 x 115 Detector Units InterDU spacing: 20m or 90m
18 DOMs InterDOM spacing: 9m or 36m

Currently 1 ARCA + 4 ORCA DUs taking data

31 PMTs

KM3NeT for SN neutrino searches

Sensitivity

KM3NeT is sensitive to electron antineutrinos via inverse beta decay

	2025 ORCA115 + ARCA230			
27 M _{sun}	5σ	25 kpc		
11 M _{sun}	5σ	Galactic center (even with just ORCA)		

(conservative estimate) ¹²

M. Colomer (APC) for the KM3NeT Collaboration, ICRC 2019

Physics reach with KM3NeT

- Part of SuperNova Early Warning System (SNEWS) since last June
- Members of the group active in the SNEWS 2.0 working groups
- Triangulation of the SN position when combining with other neutrino detectors' light curves
- Sensitivity to fast-time variations of the neutrino light curves (e.g., SASI)
- Estimate of the mean neutrino energy

Improvements in the coming decade:

- Enhanced sensitivities thanks to the completion of KM3NeT
- Detailed studies of the ambient noise to further improve the sensitivities for detection and different SN models
- Cleaner light curves expected with a better noise rejection
- Study of the synergies with other neutrino experiments (e.g., DUNE, DarkSide) to better understand supernova with MeV neutrinos

Coming back to theory ... neutrinos in dense environments

Neutrino Astrophysics

For the future measurements

- the discovery of the diffuse supernova neutrino background Super-K + Gd
- ar (extra)galactic supernova 104-6 events -SNEWS, Hyper-K, JUNO

Understanding the role of neutrinos and of flavor conversion in dense environments important

Supernova explosion mechanism ?

 $P \qquad V_{\mu} V_{\mu} V_{\mu}$

more complex than vacuum oscillations...

Neutrino flavor evolution in dense environments A complex many-body problem

Novel conversion phenomena due to neutrino self-interactions, shock waves

and turbulence.

Conditions and mechanisms for flavor evolution in dense environments need to be elucidated

Supernovae explosions and flavor evolution

GW170817 and the kilonova

- First measurement of gravitational waves from a binary neutron star merger, in coincidence with a short gamma ray burst and a kilonova.
- The comparison of electromagnetic emission with kilonova models reveals two main facts.
 - 1- Ejecta have two components : <u>dynamical</u> from the early merging phase (subdominant) and <u>neutrino-driven</u> <u>winds and viscous ejecta</u> from late time post-merger phase (dominant)
 - 2- Presence of lanthanide free ejecta (blue component) and ejecta with lanthanides (red component).

Neutrinos interactions and flavor evolution influence r-process elements abundances A lot of work needed to quantify their impact

The discovery of the Diffuse Supernova Neutrino Background

The relic neutrino flux depends on <u>core-collapse</u> <u>supernova fluxes</u>, the <u>supernova rate</u> (related to the star formation rate), integrated over redshift :

$$\phi_{\nu_{\alpha}}^{relic}(E_{\nu}') = \int dz |\frac{dt}{dz}| (1+z) R_{SN}(z) \underline{\phi_{\alpha}(E_{\nu}')}$$

 $E'_{\nu_{\alpha}} = (1+z)E_{\nu}$ redshifted neutrino energy (only the spectra tail matters) since z = 0,1,2 only contribute

Super-Kamiokande with Gd - neutron tagging (reduced backgrounds) Beacom, Vagins, PRL 93 (2004) from EGADS to SuperK-VI+Gd (2019/20)

Hyper-K (258 ktons) - several hundreds

SK (2003) : excluded SN rate models and high neutrino average energies

Crucial measurement of the R_{SN} and of the neutrino fluxes

Conclusions

- Physics questions to be answered:
 - CCSN explosion mechanism, neutrinos flavor evolution in dense environment, r-process nucleosynthesis abundances, ...
- GWs and neutrinos are unique probes to understand the dynamics and the micro-physics.
- Challenges:
 - with the current generation of detectors, we will be limited to rare events studies → need 3G GW detectors
 - Very complex many-body physics.