

The ATLAS Software Installation System for LCG/EGEE

Alessandro De Salvo(1), Alessandro Barchiesi(2), Kondo Gnanvo(3),
Carl Gwilliam(4), John Kennedy(5), Gernot Krobath(5), Andrzej Olszewski(6),
Grigory Rybkine(7)
(1) Istituto Nazionale di Fisica Nucleare, sez. Roma 1,
(2) Università di Roma I "La Sapienza“, (3) Queen Mary and Westfield College,
(4) University of Liverpool, (5) Ludwig-Maximilians-Universität München,
(6) Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences,
(7) Royal Holloway College

Abstract. The huge amount of resources available in the Grids, and the necessity to have the
most up-to-date experimental software deployed in all the sites within a few hours, have driven
the need for an automatic installation system for the LHC experiments. In this work we
describe the ATLAS system for the experiment software installation in LCG/EGEE, based on
the Light Job Submission Framework for Installation (LJSFi), an independent job submission
framework for generic submission and job tracking in EGEE. LJSFi is able to automatically
discover, check, install, test and tag the full set of resources made available in LCG/EGEE to
the ATLAS Virtual Organization in a few hours, depending on the site availability.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

c© 2008 IOP Publishing Ltd 1

1. Introduction
The huge amount of resources available in the Grids, and the necessity to have the most up-to-date
experimental software deployed in all the sites within a few hours, have driven the need for an
automatic installation system for the LHC experiments. To cope with these needs within the ATLAS
collaboration, a fully automatic software installation system has been developed for LCG/EGEE. The
installation system is based on the Light Job Submission Framework for installation (LJSFi), an
independent job submission framework for generic submission and job tracking in EGEE. In this
paper we will show the architecture and main features of the LJSFi framework.

2. The LJSFi architecture
LJSFi is a VO-independent framework for job tracking and task management in LCG/EGEE. The
framework is a thin layer over the Grid middleware, built partially of shell scripts, to wrap the Grid
commands, and python scripts to interface to the database.

The core system is based on the Installation DataBase and the command line (CLI) interface.
The CLI interface is responsible of the interaction with the Grid middleware. It uses the DB to store

and retrieve the task definitions to perform the installation tasks. The task and job status are updated in
the DB when a CLI command is invoked.

The Installation DataBase is the central store of the information about the resources, the jobs and
the software deployment status. All the LJSFi components use the DB in order to get the
configurations for specific tasks and to store the current status of the actions performed. The current
DB implementation is based on MySQL v4. Other DB backend types are also supported by the
system, including MySQL v5 cluster and Oracle.

The installation tasks and the data display are handled by the LJSFi modules and extensions.
The LJSFi architecture is modular and several extensions are possible by adding independent

modules or extending the core to add different Grid middleware environments or setups.

Figure 1
The LJSFi architecture

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

2

3. LJSFi modules
The LJSFi system has been instrumented with modules and extensions to handle installation requests.
The installations or removals may be centrally triggered as well as requested by the end-users for each
site. For this purpose the following components have been developed:

1. The RAI (Request An Installation) module;
2. The AIR (Automatic Installation Requester) module;
3. The InAgent (Installation Agent) module.

3.1. The RAI module
The RAI (Request An Installation) web interface is the portal to the user-driven installation requests.
Each user is recognized by their credentials, obtained by checking the X509 personal certificate from
the browser used to access the page. The page implements a SSL X509 security model, so only the
users with a valid certificate, issued by a Certification Authority recognized by EGEE, are allowed to
enter.

3.2. The AIR module
The centralised installations are triggered by the information stored in the installation database. When
a release is tagged as production or obsolete and set to autoinstall, the LJSFi AIR (Automatic
Installation Requester) module starts, respectively, the deployment or removal of the specified release,
in all the sites where the relevant software tag is not yet published. LJSFi provides the needed locking
mechanisms to avoid collisions among the installation jobs on the same resource or site. The AIR
module is usually invoked each hour, in order to handle the installation requests promptly.

3.3. The InAgent module
The InAgent module is used to provide a fully automatic installation system. It reads the installation
database every 10 minutes and starts the installation processes, interacting with the CLI interface.
Each process is then handled by the installation agent, which updates the database in real-time with the
task status, giving the online view of the software deployment.

The automatic installation tasks are performed by one or more agents, which may operate in
concurrent mode.

A fallback option to manual operations is also available, in case of problems. The people from the
Installation Team are able to manage all the installation tasks directly from the web interface,
changing dynamically the parameters of the auto-installer for the specific task, or manually using the
LJSFi CLI interface.

The first version of the InAgent module was introduced in late 2006, improving the scalability of
the system and reducing the amount of manual work.

4. User services
Individual users may also ask the system for specific services:

1. Pinning Releases: each user may pin a release in one or more sites, to avoid the central system
removing them while the pin is active. This is extremely important for releases used also
locally at the sites. The pins may be released by any users, and the action is logged by the
system;

2. Action Notification: each user may subscribe to the notification emails for one or more sites.
Each time an action on a release on the specified site is performed, the system sends an email
to all the subscribers to the given site.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

3

5. Web interface
The installation data, status and job history are centrally kept in the MySQL installation DB and can
be browsed via the LJSFi Webber[1] web interface. Also installation logfiles and summary files are
made available via the same web portal, protecting the sensitive information of the sites by restricting
the access only to the users with a valid certificate, recognized by LCG.

6. Grid Big Brother (GriBB)
All the installation tasks, including the LJSFi framework actions, are supervised by the GriBB (Grid
Big Brother) watchdog agent.

GriBB provides an easy and comfortable way to introduce timeouts, limits and partial output
retrieval for jobs still running in the Grid. In particular GriBB may be used to:

- Terminate the process when it exceeds the given limits for total time, memory size,
stdout/sterr size, CPU % used

- Dump, on demand, the partial stdout/stderr of a job still running in the Grid without any need
for installing external servers but only using existing DPM SEs (other SE types are being
tested)

- Provide statistics on the CPU, disk and memory usage of the running job, at the end of the task
or while still running.

7. The installation process
The software installation is performed in 3 steps:

1. Site checks;
2. Installation task;
3. Output validation.
The site checks are performed by sending a pilot job to each site where to install the software. After

the site checks have been successfully executed, the actual installation process may start. The
installation actions are performed in the target nodes (Worker Nodes) by the software management
script, handling installations and removals of the ATLAS software distribution kit with pacman[2]. For
each experiment software release installed at a site, a tag is published to the corresponding Computing
Element at the end of the installation task. Several installation tasks are defined, corresponding to the
actions to perform, including the software installation, testing, removal and tag management. At the
end of the installation tasks, LJSFi retrieves the job output and exit code from the Grid middleware:
the job output is uploaded to the web server via the Webber module, while the exit code is used to
update the task status in the DB.

8. Current status and perspectives
The LJSFi version 1.0 system has been successfully used by ATLAS since 2003 to deploy around 15
different software releases. The system has been upgraded to LJSFi version 1.2 in 2005 and has
performed more than 160000 installation jobs to deploy more than 70 releases so far.

In Figure 2 the number of successful and failed installation jobs per month of LJSFi v1.2 are
shown. The plot does not include the site check jobs. The installations have been done either manually
or through the use of a single instance of the automatic installation agent. The use of a single InAgent
instance is adequate for the current needs and does not introduce any bottleneck in the system, anyway
using more than one instance is also supported. The installation efficiency is shown in Figure 3. The
average efficiency in the selected period is ∼64% and is mostly dependent on the status of the sites and
readiness to the ATLAS software. The installation failures due to problems in the framework are
< 0.1%. The drop in the efficiency seen in the figure is mostly due to the activation of the AIR module
in late 2006, requesting the installation of several new sites, not yet ready for the ATLAS software

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

4

deployment. The situation has become more stable since May 2007. The introduction of the fully
automatic system gives the possibility to process more installation requests (Figure 4), reducing the
amount of time needed to fully complete each request. In Figure 5 the average times needed to
complete a request are shown. The values include the time to solve the problems in the sites, when
needed. The time needed to install a site with a software release as a function of the time elapsed to
complete the task is show in Figure 6: most of the sites may be installed in < 24 hours.

The LJSFi framework is currently being extended to the other WLCG Grids (NDGF and OSG), by
directly using Condor as a submission system.

The latest version of LJSFi is available for download as pacman[2] package from the INFN ATLAS
cache[3].

9. Conclusions
The LJSFi system has been proven to be flexible and robust enough to cope with the software

installation needs of the ATLAS experiment. The evolution of the framework, with the introduction of
the automatic installation agents and the user services, has improved the installation procedure
scalability and speed, while decreasing the amount of manual work.

Figure 2
LJSFi v1.2 installation jobs per month. The plot does not include the pilot jobs used for the site checks.

Figure 3
LJSFi v1.2 installation efficiency. The efficiency is dominated by the site status. The drop in the efficiency
is due to the activation of the AIR module in late 2006, requesting the installation of several new sites, not
yet ready for the ATLAS software deployment. The situation has become stable from May 2007.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

5

Figure 4
Number of requests processed by LJSFi, in bins of 2 months. The introduction of the fully automatic
system has made possible to increase the number of installation requests processed per month.

Figure 5
Request processing times, averaged over 2 months. The introduction of the fully automatic system has
decreased the processing times per request up to a factor 2.

Figure 6
Time needed to complete an installation request, in hours. Most of the sites are installed within 24
hours after the installation request has been placed in the system.

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

6

References
[1] https://atlas-install.roma1.infn.it/atlas_install
[2] http://physics.bu.edu/~youssef/pacman/htmls/
[3] pacman -get http://classis01.roma1.infn.it/pacman/cache:LJSFi

International Conference on Computing in High Energy and Nuclear Physics (CHEP’07) IOP Publishing
Journal of Physics: Conference Series 119 (2008) 052013 doi:10.1088/1742-6596/119/5/052013

7

