

Quick estimation on ILD Calibration

Manqi Ruan

Outline

- Calibration:
 - DHCAL & SemiDHCAL: study the efficiency and multiplicity of a MIP ~ low threshold setting
 - ECAL & AHCAL: represent energy deposition in unit of MIP
- Estimation with different methods
 - Cosmic rays
 - Events with mip track
 - Muon events at Z threshold (Xsec(ZThr)>>Xsec(Nominal))
 - MIP tracks in hadronic shower
 - Beam halo: calibration in the forward region
 - Radiative gas

Summary

Cosmic rays

- Calibration after construction:
 - Muon with energy > 1GeV: 1Hits/(cm^2*min) ~ 16 hours to collect 1k hits for each cell at sea level (less time for AHCAL for large cell size)
- Calibration after installation: years of operation!
 - 0.5% electric duty circle ~ 200 times more time!
 - Majority of the cells are not horizontal
 - Detector under ground + tons of iron in the YOKE & Cole: Hit rate reduced by a factor of >2
- Calibration after construct each DHCAL module! ~
 Other calibration scenario after installation

Cross section

Comparing to Nominal beam setting:

- GigaZ setting has 20 times less Luminosity (10³³cm⁻²s⁻¹ to 2*10³⁴cm⁻²s⁻¹) but ~ 3 - 4 order of magnitudes large the cross section
- Run Calibration at GigaZ

Cross section

- Xsec for events with final states muon
 - ee -> mu mu

Xsec(GigaZ): 2.1M fb ~ 4.2M muon tracks per inv(fb) ~ 200M hits (if each track has 48 hits) ~ 4.2 tracks per second

Xsec(Nominal): 1194 fb, ISR effect actived

• ee -> tau tau -> mu + (other particles)

Xsec(GigaZ): 2.1M fb (tau tau) ~ 2.1M*0.35 = 0.7M muon tracks per inv(fb) ~ 0.7 trk/s

Xsec(Nominal): 1172 fb, ISR effect actived

ee -> bb -> mu + (other particles)

Xsec(GigaZ): 9.2M ~ 1.9M muon tracks per inv(fb) ~ 1.9 trk/s

Xsec(Nominal): 2201 fb. ISR effect actived

Muon events

/10mrad 200

160 140

120

220

Polar Angle Distribution of Muon in bb events (100k)

BB

Entries

Mean

RMS

43550

1.574

0.7453

6

Similar muon polar angle distribution

- ee -> mu mu events only: 7 Hits/(cm^2*fb^(-1))
- ee -> muon + (other particles): 11 Hits/(cm^2*fb^(-1))

LoI workshop @ LLR

MIP tracks in hadronic shower

 Each hadronic shower has at least 1-2 MIP tracks;

- At GigaZ point: Xsec(qqbar)~21*Xsec(mu-mu) ~ 2G Mip hits*fb (Suppose for each qqbar events we can reconstruct 50 Mip hits);
- Together with muon events: 9 months to collect 1k hits/cm^2
- Original idea: Frank Simon: ILD HCAL Calibration with Track Segments in Hadron Showers
 LoI workshop @ LLR

20.02.2009

8

Beam Halo Muons

- With different method of muon shielding, our friends in the BDS & Magnetic group is trying to reduce the Beam Halo muon density by orders of magnitude
- Their goal is to reach
 10μ /200bunches ~ 660μ /s
 from the tunnel
- Ideal source for EndCap Calibration!

Figure 3: A top view of the BDS tunnel with the entire beam line described in MARS15 simulation. Three beam-loss locations at primary collimators(SP2, SP4, SPEX) are shown. The locations of protection collimators(PC) and absorbers(AB) are also shown.

350m from IP

LoI workshc Figure 6: Two dimensional distributions of total muon flux for (a)no, (b)wall and (c)donut muon-spoiler cases.

Beam Halo Muons

Particle Fluxes (cm⁻²s⁻¹) at SiD from e⁺ BDS

WG-D Meeting, Aug 15, 2007

Detector Background Tolerances and Shielding - N.V. Mokhov

10

Radiative Gas

- Characteristic energy spectrum
- Check the Geometry Uniformity
 - Small fraction of radiative gas during run time allow us to check uniformity on time
- High Hit Rate: (f, radiative gas fraction; τ, half life time)

$$Rate = ln2 \frac{V_{chamber} N_A f}{V_0 \tau} = 2.24 * 10^{18} \frac{f}{\tau(s)} Hz/cm^2$$

Radiative Gas

- Considering the electric duty circle, only 1/200 of hits could be detected ~ we still could have large hit rate!
- Gas candidates:
 - Xe133: ~100 keV β decay; $\tau = 4.5*10^{5}$ sec
 - Event Rate: 2.4*10¹⁰*f Hz/cell
 - Rd222: 5.5 MeV α decay; τ = 3.3*10^5 sec
 - Event Rate: 3.3*10¹⁰*f Hz/cell
 - •
- Problem: a radiative hit is not a MIP hit! Energy deposition property of radiative hits need to be studied;

Summary

- Cosmic ray: Calibration right after construct each module ~ 16 hours for 1k hits per cell (cm^2)
- Machine-based events
 - mu events: ~ 6.8 Trk/s at GigaZ (much lower than the Cosmic ray frequency!);
 - Hadronic shower: ~ 2k Mip hits/s; together with mu events, we need 9 months for 1k hits/cell
 - Beam hole events: ~ 300 Trk/s with Nominal Beam & best shielding (10μ /200bunches from 4.5 diameter beam tunnel ~ 660μ /s), only 1 month is needed for 1k hits/cell in the forward region. could be increased by orders of magnitude if turn off muon spoiler ;

Summary

- Radiative gas method:
 - Could be used during run time for on-time uniformity check
 - Promising & need further study.
- Majority of the hits are MIP hits: thus for ECAL and AHCAL by reading the ADC spectrum per cell, iteration to upgrade the Calibration constant with time is possible

Muon events

B Field: not all the muon tracks could be used for DHCAL Barrel Calibration

Beam Halo Muons

- With different method of muon • shielding, our friends in the BDS & Magnetic group is trying to reduce the Beam Halo muon density by orders of magnitude
- Their goal is to reach • 10μ /200bunches ~ 660 μ /s from the tunnel
- Ideal source for EndCap • **Calibration!**

TUNNEL MUON SPOILERS: 9+18 m or 5 m Walls

<u>0.6</u>m

-1394.222

Particle Energy Spectra (per bunch) at SiD from e⁺ BDS

LoI workshop @ LLR