
Quark Gluon Plasma at LHCb

FELIPE GARCÍA 
Laboratoire Leprince-Ringuet, École polytechnique 

Laboratoire de l’Accélérateur Linéaire  

Rencontres des Jeunes Physicien(ne)s 2019

1 RJP  - November 29 2019



F. García (LLR/LAL)

 What is matter made of ?

Quarks? Gluons?
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F. García (LLR/LAL)

 In order to keep Quarks stuck together, we need 
more: 
               GLUONS! 
together with quarks, they carry colour charge. 

 Gluons are the carriers of  the Strong Force. 

 Comes with a caveat: 

• Any final state must be “white” or colourless. 

• We cannot observe quarks alone, they must be 
in “packages”.

⇒

3

Quarks? Gluons?
26/11/2019 17:09Standard Model of Elementary Particles
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F. García (LLR/LAL) 4

Confined to deconfined

‣Quarks and gluons are doomed to 
always be in “white” or colourless 
packages  Hadrons. 

‣If  you try to pull one apart, by 
injecting energy you will eventually 
produce another pair that makes it 
“white”.

→

q̄

q

‣In very high density and temperature 
conditions, quarks and gluons can 
move freely. 

‣This is a deconfined state of  matter. 
 The Quark Gluon Plasma (QGP)
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F. García (LLR/LAL)

 QGP is believed to have been the state of  
the universe up to a few milliseconds after 
the Big-Bang. 

 Nowadays we can reproduce this state of  
matter in very small quantities in high 
energy Heavy Ion collisions.

5

QGP in the Universe

QGP
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F. García (LLR/LAL) 6

Heavy Ion colliders

SPS

LHC

LHCb

 At Brookhaven National Lab (US):  
       •Relativistic Heavy Ion Collider (RHIC)  GeV.→ sNN ∼ 200

 At CERN (Switzerland/France): 
       •Super Proton Synchrotron (SPS)  GeV. 
       •Large Hadron Collider (LHC)*  TeV. 
                                         
 
* at LHCb in addition we can have  GeV.

→ sNN ∼ 20
→ sNN ∼ 5

→ sNN ∼ 69 − 110
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B. Diab

How does this look like?
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Before colliding
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How does this look like?
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B. Diab

How does this look like?
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As the collision begins
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B. Diab

How does this look like?
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B. Diab

How does this look like?
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QGP is formed!
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How does this look like?
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B. Diab

How does this look like?
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QGP cools down as it expands
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How does this look like?
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Hadronisation
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B. Diab

How does this look like?
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What we can see!
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F. García (LLR/LAL)

 Many different observables are used to extract information about the 
QGP, the main ones: 

• Strange quark enhancement. 

• Jet quenching. 

• Elliptic flow measurements. 

• Charmonia suppression. 

• Bound states between a  and a  quark. 

• This bound state would be “melted” into the QGP, and we 
would see less than expected.

c c̄

How to probe the QGP

8

c̄

c

J/ψ
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F. García (LLR/LAL)

 When a  pair is created, it can hadronise into a  meson, or lighter mesons with 
other quark flavours. 

 The  mass is high enough that it cannot be created inside the QGP, only in the 
initial collision. 

 

cc̄ J/ψ

cc̄

τcc̄
formation < τQGP

formation < τhadronisation < τJ/ψ
decay

Using Charmonia

9

B. Diab

RJP  - November 29 2019



F. García (LLR/LAL)

Using Charmonia

10

B. Diab

J/ψ

 There is a constant battle between suppression and regeneration. 

• The higher the collision energy the more  pairs produced. 

• The more  pairs produced, the suppression is more hidden by regeneration. 

 But we need high collision energy to have suppression!

cc̄

cc̄
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F. García (LLR/LAL)

Forward single arm spectrometer. 

Designed to study heavy flavour physics in  collisions. 

Only LHC experiment fully instrumented between 10 and 
250 mrad around the beam axis. 

LHCb can also operate in -Pb and Pb-Pb collisions. 

LHCb can be operated as a fixed-target experiment.

pp

p

11

The LHCb detector
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F. García (LLR/LAL)

Advantages of  operating in fixed target. 

✤No regeneration of  charmonium.  

✤Fills the existing energy gap between SPS and RHIC. 
      

 

✤Probe the Quark Gluon Plasma (QGP) phase transition via colour 
screening.

sNN
SPS < sNN

SMOG < sNN
RHIC < sNN

LHC

∼ 20 GeV < ∼ 70 GeV < 200 GeV < 5 TeV

12

The LHCb detector
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F. García (LLR/LAL)

 How do we want to see the suppression? 

✤ We reconstruct the  and the . 

✤ We take the ratio  . 

✤ Compare between the different collision systems. 

 This is an ongoing work, and in the future we will have 
many more collision systems!

J/ψ → μμ D0 → K∓π±

J/ψ
D0

13

Charmonia production
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F. García (LLR/LAL)

 The possible catalog of  systems to be studied is 
broad. 

 Expected data to be recorded in Run 3 of  LHC. 

 We expect to reach a deep understanding of  nuclear 
effects. 

 Hopefully we will be able to unambiguously provide 
evidence of  the QGP via colour screening.

14

The future of  LHCb fixed target
LHCb-PUB-2018-015
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https://cds.cern.ch/record/2649878/files/LHCb-PUB-2018-015.pdf
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Thank You!
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