

From gravitational black holes to analogue gravity: Hawking radiation in quantum fluids

Friday, 29 November 2019 Rencontres des Jeunes Physiciens 2019, Collège de France

Mathieu Isoard & Nicolas Pavloff

LPTMS, Université Paris-Sud

Nature, 1974; Commun. math. Phys, 1975

Nature, 1974; Commun. math. Phys, 1975

Nature, 1974; Commun. math. Phys, 1975

Nature, 1974; Commun. math. Phys, 1975

Particle Creation by Black Holes

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

Received April 12, 1975

Nature, 1974; Commun. math. Phys, 1975

Particle Creation by Black Holes

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

Received April 12, 1975

$$\hookrightarrow T_H = 10^{-6} \left(\frac{M_\circ}{M} \right)$$
 K.

Nature, 1974; Commun. math. Phys, 1975

Particle Creation by Black Holes

S. W. Hawking

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, England

Received April 12, 1975

 \hookrightarrow M87: M = 6.5 billions of solar masses $\rightarrow T_H \simeq 10^{-14} K.$

W.G. Unruh, PRL, 1981

Volume 46	25 MAY 1981	NUMBER 21
	Experimental Black-Hole Evaporation?	
	W. G. Unruh	
Department of Physics,	University of British Columbia, Vancouver, British (Received 8 December 1980)	Columbia V6T2A6, Canad
It is shown that	the same arguments which lead to black-hole evapor	ration also predict

transsonic fluid flow.

W.G. Unruh, PRL, 1981

Volume 46	25 MAY 1981	NUMBER 2
	Experimental Black-Hole Evaporation?	
	W. G. Unruh	
Department of Physics, U	niversity of British Columbia, Vancouver, British (Received 8 December 1980)	Columbia V6T2A6, Canad
It is shown that	the same arguments which lead to black-hole evapor	ation also predict
that a thermal spe	ctrum of sound waves should be given out from the	sonic horizon in

W.G. Unruh, PRL, 1981

Volume 46	25 MAY 1981	NUMBER 21
	Experimental Black-Hole Evaporation?	
	W. G. Unruh	
Department of Physics, U	iniversity of British Columbia, Vancouver, British (Received 8 December 1980)	Columbia V6T2A6, Canad
It is shown that	the same arguments which lead to black-hole evapor	ration also predict

transsonic fluid flow.

W.G. Unruh, PRL, 1981

Volume 46	25 MAY 1981	NUMBER 21
	Experimental Black-Hole Evaporation?	
	W. G. Unruh	
Department of Physics, U	iniversity of British Columbia, Vancouver, British C (Received 8 December 1980)	olumbia V6T2A6, Canad
It is shown that	the same arguments which lead to black-hole evapors	ation also predict

transsonic fluid flow.

W.G. Unruh, PRL, 1981

x < 0

x=0

x > 0

 \overline{x}

5/9

$$|0,in
angle=\hat{S}_{
m sq}(r)|0,out
angle$$

 \hookrightarrow The same process everywhere

 \hookrightarrow The same process everywhere

 \hookrightarrow The same process everywhere

 \hookrightarrow The same process everywhere

 $\,\hookrightarrow\,$ The same process everywhere

story of Hawking radiation

- \hookrightarrow Hawking's prediction, 1974
- \hookrightarrow Unruh's suggestion, 1981
- \hookrightarrow First detection of spontaneous Hawking radiation in an analogue system, 2016 & 2019
- \hookrightarrow Theoretical confirmation, 2019

story of Hawking radiation

- \hookrightarrow Hawking's prediction, 1974
- \hookrightarrow Unruh's suggestion, 1981
- → First detection of spontaneous Hawking radiation in an analogue system, 2016 & 2019
- \hookrightarrow Theoretical confirmation, 2019

story of Hawking radiation

- \hookrightarrow Hawking's prediction, 1974
- \hookrightarrow Unruh's suggestion, 1981
- ↔ First detection of spontaneous Hawking radiation in an analogue system, 2016 & 2019
- \hookrightarrow Theoretical confirmation, 2019

What's next?

- \hookrightarrow Thermality?
- \hookrightarrow Back reaction: effect of Hawking radiation on the condensate itself

story of Hawking radiation

- \hookrightarrow Hawking's prediction, 1974
- \hookrightarrow Unruh's suggestion, 1981
- ↔ First detection of spontaneous Hawking radiation in an analogue system, 2016 & 2019
- \hookrightarrow Theoretical confirmation, 2019

What's next?

- \hookrightarrow Thermality?
- \hookrightarrow Back reaction: effect of Hawking radiation on the condensate itself
- ← Entanglement between the Hawking pair: squeezed states and quantum information theory

New challenges for analogue gravity

A bridge between

Condensed Matter and General Relativity

24-28 August 2020

image: © University of Nottingham.

Thank you!