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1t s shown that the same arguments which lead to black-hole evaporation also predict
that a thermal spectrum of sound waves should be given out from the sonie horizon in
tranasonic fluid flow.
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classical gravitational field is the motion of sound
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Acoustic black holes in Bose-Einstein condensates
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Acoustic black holes in Bose-Einstein condensates
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Experimental detection of the Hawking effect...
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Hawking radiation: r ~ 1
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_[ story of Hawking radiation ]

— Hawking's prediction, 1974
< Unruh's suggestion, 1981

— First detection of spontaneous Hawking radiation in an
analogue system, 2016 & 2019

< Theoretical confirmation, 2019

,_[ What's next? ]

< Thermality?

— Back reaction: effect of Hawking radiation on the con-
densate itself

— Entanglement between the Hawking pair: squeezed

states and quantum information theory




New challenges for analogue gravity

A bridge befween
Condensed Matter and General Relafivity
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