

ARIANE GAYOUT, NICOLAS PLIHON, MICKAËL BOURGOIN (LP ENS DE LYON) ÁRMANN GYLFASON (REYKJAVIK UNIVERSITY)

- Laminar wind tunnel experiment
- Pitot measurements for flow velocity
- Angular (θ) measurements via potentiometer

mean flow

direction

U

PENDULUM IN A FLOW

PENDULUM

AIR FLOW

PENDULUM IN A FLOW

PENDULUM WITH GRAVITY

- Dynamical equation at small $\dot{\theta}$:
- $J\ddot{\theta} = -mgl\sin(\theta)$

PENDULUM IN A FLOW WITH GRAVITY • Dynamical equation at small $\dot{\theta}$: $J\ddot{\theta} = -mgl\sin(\theta) + \frac{1}{2}\rho SLU^2 C_N(\theta)$ • Correction in U:

$$J\ddot{\theta} = -mgl\sin(\theta) + \frac{1}{2}\rho SL(U^2 - 2UL\cos(\theta)\dot{\theta} + L^2\dot{\theta}^2) C_N\left(\theta + \tan^{-1}\left(\frac{L\dot{\theta}\sin\theta}{U - L\dot{\theta}\cos\theta}\right)\right)$$

• Correction in θ :

$$J^*\ddot{\theta} = -\frac{1}{2}\rho SL^*(U^2 - 2UL^*\cos(\theta)\dot{\theta} + L^{*2}\dot{\theta}^2) C_N\left(\theta + \tan^{-1}\left(\frac{L^*\dot{\theta}\sin\theta}{U - L^*\dot{\theta}\cos\theta}\right)\right)$$

EXPERIMENTAL TRAJECTORIES

$$J^*\ddot{\theta} = \frac{1}{2}\rho SL^* (U^2 - 2UL^* \cos(\theta)\dot{\theta} + L^{*2}\dot{\theta}^2) C_N \left(\theta + \tan^{-1}(\frac{L^*\dot{\theta}\sin\theta}{U - L^*\dot{\theta}\cos\theta})\right)$$

$$J^*\ddot{\theta} = \frac{1}{2}\rho SL^* (U^2 - 2UL^* \cos(\theta)\dot{\theta} + {L^*}^2\dot{\theta}^2) C_N \left(\theta + \tan^{-1}(\frac{L^*\dot{\theta}\sin\theta}{U - L^*\dot{\theta}\cos\theta})\right)$$

A DYNAMICAL C_N COEFFICIENT

DYNAMICAL TRANSLATION INTO FUNDAMENTAL EQUATION

$$J^*\ddot{\theta} = \frac{1}{2}\rho SL^* U_{eff}^2 C_N^* (\theta_{eff}, \dot{\theta}, \ddot{\theta}, U, t)$$

2 ways of taking into account C_N^* in the equation at 1st order:

DYNAMICAL TRANSLATION INTO FUNDAMENTAL EQUATION

$$J^*\ddot{\theta} = \frac{1}{2}\rho SL^* U_{eff}^2 C_N^* (\theta_{eff}, \dot{\theta}, \ddot{\theta}, U, t)$$

2 ways of taking into account C_N^* in the equation at 1st order:

• Added mass $\Leftrightarrow \ddot{\theta}$ correction:

$$\int_{eff}^{*} \ddot{\theta} = \frac{1}{2}\rho SL^{*}(U^{2} - 2UL^{*}\cos(\theta)\dot{\theta} + L^{*2}\dot{\theta}^{2}) C_{N}\left(\theta + \tan^{-1}\left(\frac{L^{*}\dot{\theta}\sin\theta}{U - L^{*}\dot{\theta}\cos\theta}\right)\right)$$

DYNAMICAL TRANSLATION INTO FUNDAMENTAL EQUATION

$$J^*\ddot{\theta} = \frac{1}{2}\rho SL^* U_{eff}^2 C_N^* (\theta_{eff}, \dot{\theta}, \ddot{\theta}, U, t)$$

2 ways of taking into account C_N^* in the equation at 1st order:

• Added mass $\Leftrightarrow \ddot{\theta}$ correction:

$$\int_{eff}^{*} \ddot{\theta} = \frac{1}{2}\rho SL^{*}(U^{2} - 2UL^{*}\cos(\theta)\dot{\theta} + L^{*2}\dot{\theta}^{2}) C_{N}\left(\theta + \tan^{-1}(\frac{L^{*}\dot{\theta}\sin\theta}{U - L^{*}\dot{\theta}\cos\theta})\right)$$

• Added damping $\Leftrightarrow \dot{\theta}$ correction :

$$J^*\ddot{\theta} = -\alpha_U J^*\dot{\theta} + \frac{1}{2}\rho SL^* (U^2 - 2UL^* \cos(\theta)\dot{\theta} + {L^*}^2\dot{\theta}^2) C_N \left(\theta + \tan^{-1}(\frac{L^*\dot{\theta}\sin\theta}{U - L^*\dot{\theta}\cos\theta})\right)$$

ESTIMATING THE CORRECTIONS

UNDERSTANDING THE DAMPING

UNDERSTANDING WHERE THE DAMPING COMES FROM

UNDERSTANDING WHERE THE DAMPING COMES FROM

UNDERSTANDING WHERE THE DAMPING COMES FROM

CONCLUSION

CONCLUSION

CONCLUSION

"With Great Amplitude Comes Great Nonlinearity"

THANK YOU FOR YOUR ATTENTION

