PolarEx

A facility for on-line nuclear orientation at ALTO

Rémy Thoër
CSNSM
Université Paris-Sud - CNRS

November 2019

NLTO

Advanced commissionning of PolarEx via multipole mixing ratio measurements

- Introduction to Nuclear Physics
- Physics motivations and principles
- PolarEx set-up
- Current status of my PhD

The nucleus

Nucleus: A nucleons (N neutrons and Z protons)

The nucleus

Nucleus: A nucleons (N neutrons and Z protons)

- Strong nuclear interaction
- Weak nuclear interaction
- Electromagnetic interaction
- Gravitationnal interaction

The nucleus

Nucleus: A nucleons (N neutrons and Z protons)

- Strong nuclear interaction
- Weak nuclear interaction
- Electromagnetic interaction
- Gravitationnal interaction

The nucleus

Emergence at the microscopic level:
The great challenge of nuclear physics in the XXI ${ }^{e}$ century

The Nuclear Chart

Nuclear Structure

\Rightarrow The nucleus is a complex quantum many-body system

Nuclear Structure

\Rightarrow The nucleus is a complex quantum many-body system

Goal of Nuclear Physics :

- Understand the Nuclear interaction
- Explain and predict properties of the nucleus

How?

Nuclear Structure

\Rightarrow The nucleus is a complex quantum many-body system

Goal of Nuclear Physics :

- Understand the Nuclear interaction
- Explain and predict properties of the nucleus

How $? \Rightarrow$ Probe the limits of nuclear models

- Measure basic parameters of exotic nuclei (mass, half-life, spin, parity ...)
- Measure fine caracteristics of nulei in extreme conditions

Achievable observables

Low Temperature Nuclear Orientation (LTNO)
Study of nuclear magnetic properties of nuclei under extreme conditions

$$
\begin{aligned}
& B \sim 10-100 T \\
& T \sim 7-20 m K
\end{aligned}
$$

Achievable observables

Low Temperature Nuclear Orientation (LTNO)
Study of nuclear magnetic properties of nuclei under extreme conditions

$$
\begin{aligned}
& B \sim 10-100 T \\
& T \sim 7-20 \mathrm{mK}
\end{aligned}
$$

- Indirect measurement of multipolarity mixing ratio δ

$$
\delta=\frac{\left\langle I_{f}\right| O\left(\sigma^{\prime} L^{\prime}\right)\left|I_{i}\right\rangle}{\left\langle I_{f}\right| O(\sigma L)\left|I_{i}\right\rangle} \text { and } \delta^{2}=\frac{P_{\gamma}^{\prime}\left(\sigma^{\prime} L^{\prime}\right)}{P_{\gamma}(\sigma L)}
$$

Achievable observables

Low Temperature Nuclear Orientation (LTNO)

Study of nuclear magnetic properties of nuclei under extreme conditions

$$
\begin{aligned}
& B \sim 10-100 T \\
& T \sim 7-20 m K
\end{aligned}
$$

- Indirect measurement of multipolarity mixing ratio δ

$$
\delta=\frac{\left\langle I_{f}\right| O(E 2)\left|I_{i}\right\rangle}{\left\langle I_{f}\right| O(M 1)\left|I_{i}\right\rangle} \text { and } \delta^{2}=\frac{P_{\gamma}(E 2)}{P_{\gamma}(M 1)}
$$

Achievable observables

Low Temperature Nuclear Orientation (LTNO)

Study of nuclear magnetic properties of nuclei under extreme conditions

$$
\begin{aligned}
& B \sim 10-100 T \\
& T \sim 7-20 m K
\end{aligned}
$$

- Indirect measurement of multipolarity mixing ratio δ
- Direct measurement of nuclear magnetic moments μ

Nuclear
Physics

- Applications in solid state physics $\left(H_{H f}\right)$

$$
\delta=\frac{\left\langle I_{f}\right| O(E 2)\left|I_{i}\right\rangle}{\left\langle I_{f}\right| O(M 1)\left|I_{i}\right\rangle} \text { and } \delta^{2}=\frac{P_{\gamma}(E 2)}{P_{\gamma}(M 1)}
$$

Introduction to LTNO

Introduction to LTNO

Introduction to LTNO

Very low temperatures + High magnetic field
\Rightarrow Angular distribution of the emission is anisotropic $W(\theta)$

${ }^{60}$ Co used as nuclear thermometer

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}
$$

Introduction to LTNO

$B=B_{\text {applied }}+H_{H f}$

RF on \Rightarrow Destroy the anisotropy

What is Polarex?

The Set-up

- $\mathrm{A}^{3} \mathrm{He}-{ }^{4} \mathrm{He}$ dilution refrigerator
- A supraconductor magnet
- A ferromagnetic foil for the implantation of the nuclei
- 4 HPGe detectors with associated electronic
- Nuclear magnetic
 resonance

What is Polarex?

Location

Located at ALTO in Orsay, France

Black off-line

Current Analysis : Corrections

Source : ${ }^{54} \mathrm{Mn},{ }^{56,57,58} \mathrm{Co}$ and ${ }^{59} \mathrm{Fe}$, fusion-evaporation $\mathrm{d}+\mathrm{Fe} 11 \mathrm{MeV} / \mathrm{A}$

- Standard high precision spectrometry technics

Critical points :

- Evaluation of the temperature (${ }^{60} \mathrm{Co}$ inside the refrigerator)
- Correction of the dead time
- Correction of the activity $\Lambda=\exp (-\lambda \Delta t)$

$$
n(\theta)=\sum_{\text {runs }} \frac{N(\theta)}{\left(T_{\text {tot }}-T_{\text {dead }}(\theta)\right) \Lambda}
$$

- Last on going correction : Coincidence summing effects

Current Analysis : summing and simulation

Current Analysis : summing and simulation

Current Analysis : summing and simulation

Work in progress

Gamma spectrum of summing events

- Simulation with Geant4
- Same amount of summing events
- Algorithm in the ProcessHits to tag summing events
- Summing identification
- Correction in the actual data

Current status of my PhD

Development for the experiment
The ongoing analysis is almost over \Rightarrow mixing ratio δ measurement
We plan to perform a commissioning of the NMR \Rightarrow magnetic moment measurement

Current status of my PhD

Development for the experiment
The ongoing analysis is almost over \Rightarrow mixing ratio δ measurement
We plan to perform a commissioning of the NMR \Rightarrow magnetic moment measurement

Current status of my PhD

Development for the experiment
The ongoing analysis is almost over \Rightarrow mixing ratio δ measurement
We plan to perform a commissioning of the NMR \Rightarrow magnetic moment measurement

Current status of my PhD

Development for the experiment
The ongoing analysis is almost over \Rightarrow mixing ratio δ measurement
We plan to perform a commissioning of the NMR \Rightarrow magnetic moment measurement

What's next?

In 2019 NMR commissioning : magnetic moment measurement ${ }^{139} \mathrm{Ce}$

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of $H_{H f}$ of Pm in Fe
- Measurement of the magnetic moments of these Pm isotopes

Then... by 2020

On-line physics case :
Study of magnetic moments of $\mathrm{Sb}\left(\mathrm{A}=130^{g, m}, 132^{g, m}, 134^{g, m}\right)$

What's next?

In 2019 NMR commissioning : magnetic moment measurement ${ }^{139} \mathrm{Ce}$

Off-line physics case : Study of Pm isotopic chain (A=147, 149, 151)

- Measurement of $H_{H f}$ of Pm in Fe
- Measurement of the magnetic moments of these Pm isotopes

Then... by 2020

On-line physics case :
Study of magnetic moments of $\mathrm{Sb}\left(\mathrm{A}=130^{g, m}, 132^{g, m}, 134^{g, m}\right)$

Thank you for your attention

Thanks to collaborators : I. Deloncle, C. Gaulard, F. Ibrahim, F. Le Blanc, S. Roccia, D. Verney and ALTO staff

New line under construction

Sources of ${ }^{54} \mathrm{Mn},{ }^{56,57,58} \mathrm{Co}$ and ${ }^{59} \mathrm{Fe}$

Produced by fusion-evaporation $\mathrm{d}+\mathrm{Fe}$ at $11 \mathrm{MeV} / \mathrm{A}$

Polarex : Which Nuclei?

- Limitation on the life-time
- Need time to reach a thermal equilibrium
- Minimum flux of $10^{3} \mathrm{ions} / \mathrm{s}$...
- ... and a maximum of 10^{7} ions/s

- Need energy of at least 40 keV
\Rightarrow At the end, around 300 nuclei are accessible at ALTO for On-Line Nuclear Orientation method

Off-line study : Pm

- $H_{H f}$ in Fe is badly known : $400 \pm 100 T$
- $\mu\left({ }^{147} \mathrm{Pm}\right)$ is known by laser spectroscopy : $+2.58(7)$
- Measurement of the resonant frequency (LTNO/NMR)
$\Rightarrow \Delta E=\mu B / I$
\Rightarrow Precise $H_{H f}$ in Fe at Pm site
- Measurement of the magnetic moments of ${ }^{149,151} \mathrm{Pm}$ isotope

```
\mp@subsup{}{}{147}\textrm{Pm}:2.62 y
149 Pm : 53.08 h
151 Pm : 28.4 h
```


LTNO Calculations

$$
\begin{aligned}
& W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda}\left(I_{0}, T\right) U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta) \\
& W(0)=1+B_{2} U_{2} Q_{2} A_{2}+B_{4} U_{4} Q_{4} A_{4} \\
& W(\pi / 2)=1-\frac{1}{2} B_{2} U_{2} Q_{2} A_{2}+\frac{3}{8} B_{4} U_{4} Q_{4} A_{4}, \\
& A_{2}=\frac{\frac{3}{8}(1-W(0))+(W(\pi / 2)-1)}{-\frac{7}{8} B_{2} U_{2} Q_{2}} \\
& A_{2}^{\prime}=\frac{\frac{3}{8}\left(1-W^{\prime}(0)\right)+\left(W^{\prime}(\pi / 2)-1\right)}{-\frac{7}{8} B_{2}^{\prime} U_{2}^{\prime} Q_{2}^{\prime}} \\
& \frac{A_{2}}{A_{2}^{\prime}}=\frac{\frac{3}{8}(1-W(0))+(W(\pi / 2)-1)}{\frac{3}{8}\left(1-W^{\prime}(0)\right)+\left(W^{\prime}(\pi / 2)-1\right)} \\
& \frac{A_{4}}{A_{4}^{\prime}}=\frac{\frac{1}{2}(1-W(0))-(W(\pi / 2)-1)}{\frac{1}{2}\left(1-W^{\prime}(0)\right)-\left(W^{\prime}(\pi / 2)-1\right)},
\end{aligned}
$$

LTNO Method

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta)
$$

$B_{\lambda}\left(I_{0}, T\right)$: Orientation parameter
$U_{\lambda}\left(I_{i}, I_{f}\right)$: Deorientation coefficient
$Q_{\lambda}(\theta)$: Solid angle correction
$A_{\lambda}(\delta)$: Angular distribution
$P_{\lambda}(\cos \theta)$: Legendre polynomial

LTNO Method

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta)
$$

$$
\begin{aligned}
& B_{\lambda}\left(I_{0}, T\right): \text { Orientation parameter } \\
& U_{\lambda}\left(I_{i}, I_{f}\right): \text { Deorientation coefficient } \\
& Q_{\lambda}(\theta): \text { Solid angle correction } \\
& A_{\lambda}(\delta): \text { Angular distribution } \\
& P_{\lambda}(\cos \theta): \text { Legendre polynomial }
\end{aligned}
$$

B_{λ} depends on the spin and the temperature

LTNO Method

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta)
$$

$B_{\lambda}\left(I_{0}, T\right)$: Orientation parameter
$U_{\lambda}\left(I_{i}, I_{f}\right)$: Deorientation coefficient
$Q_{\lambda}(\theta)$: Solid angle correction
$A_{\lambda}(\delta)$: Angular distribution
$P_{\lambda}(\cos \theta):$ Legendre polynomial
U_{λ} occurs at each "hidden" transition

LTNO Method

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta)
$$

$B_{\lambda}\left(I_{0}, T\right)$: Orientation parameter $U_{\lambda}\left(I_{i}, I_{f}\right)$: Deorientation coefficient $Q_{\lambda}(\theta)$: Solid angle correction $A_{\lambda}(\delta)$: Angular distribution
$P_{\lambda}(\cos \theta):$ Legendre polynomial

The multipole mixing ratio δ is taken from A_{λ}

LTNO Method

Angular distribution of the emission

$$
W(\theta)=\frac{N_{\text {cold }}(\theta)}{N_{\text {warm }}(\theta)}=1+\sum_{\lambda} B_{\lambda} U_{\lambda} Q_{\lambda} A_{\lambda} P_{\lambda}(\cos \theta)
$$

$B_{\lambda}\left(I_{0}, T\right)$: Orientation parameter
$U_{\lambda}\left(I_{i}, I_{f}\right)$: Deorientation coefficient
$Q_{\lambda}(\theta)$: Solid angle correction
$A_{\lambda}(\delta)$: Angular distribution
$P_{\lambda}(\cos \theta)$: Legendre polynomial

$$
A_{\lambda}=\frac{F_{\lambda}\left(L, L, I_{f}, I_{i}\right)+2 \delta F_{\lambda}\left(L, L^{\prime}, I_{f}, I_{i}\right)+\delta^{2} F_{\lambda}\left(L^{\prime}, L^{\prime}, I_{f}, I_{i}\right)}{1+\delta^{2}}
$$

