

Storage statistics through Hadoop ecosystem

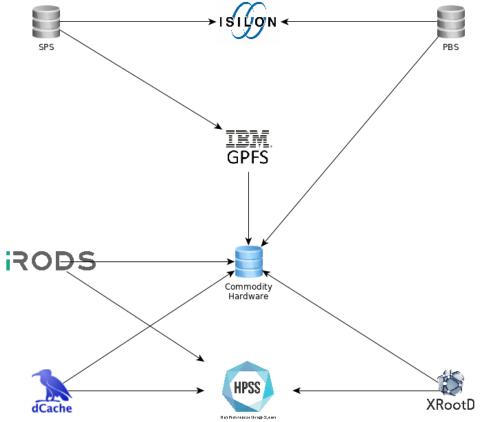
Japan-France Workshop on computing technologies Author: Antoine DUBOIS

Co-Author: Osman AIDEL

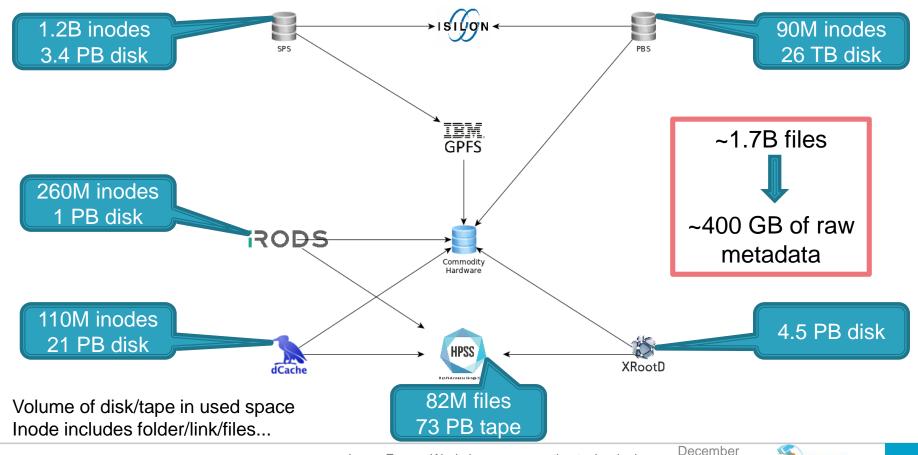
Context

Storage statistics project

Conclusion



Context


Storage elements at CC-IN2P3 1/2

SPS: is a Semi Permanent Storage with high performance used as large shared group space for data

PBS: is a Permanent Backed-up Storage used for home folders, web hosting, job applications...

Storage elements at CC-IN2P3 2/2

Japan-France Workshop on computing technologies

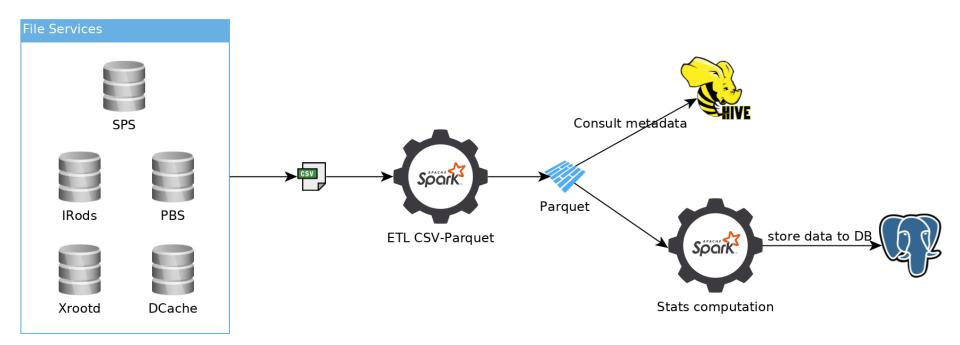
2nd 1209

- Exponential data growth is expected :
 - LHC Run 4: more data than ever before.
 - LSST: at least 15 PB only for the catalogues in the next 10 years.
 - Euclid: estimation of 10 PB in the next 5 years.
- In 2030, we expect up to 4 TB of metadata only.

Storage statistics project

- A centralized solution.
- A scalable solution.
- Compute:
 - Any simple stat (example: file size/user) on any storage element with the same code.
 - Storage element specific stat (example: file/server).
- Offer a simple interface:
 - To consult/develop statistics.
 - To consult storage element metadata.
- Regular stats

Reproduce existing statistics for each storage


Provide access to consolidated metadata for customized requests.

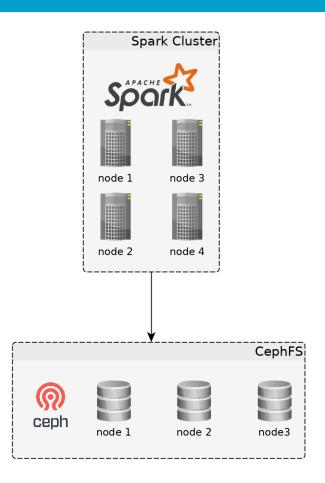
Integrate those data/stats into the CC-IN2P3 Management team tools.

Common columns

Storage Element	Path	Туре	UID	GID	C-time	A-time	M-time	disk
IRods	\checkmark	\checkmark	?	?	×	×	\checkmark	\checkmark
DCache	\checkmark							
HPSS	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?
PBS/SPS	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?
XRootD	\checkmark	?	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	?

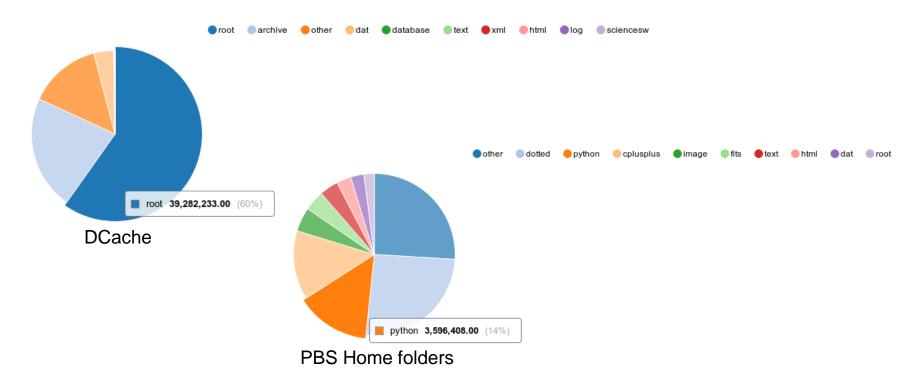
Specific columns

Storage Element	ID	Server / pool	User name	Group name	Cr-Time	Read count	Write count	COS	Permission	Blocks	# links
IRods	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×	×	×	×	×
DCache	\checkmark	\checkmark	?	?	\checkmark	×	×	×	×	×	×
HPSS	×	×	?	?	×	\checkmark	\checkmark	\checkmark	\checkmark	×	×
PBS/SPS	×	×	?	?	×	×	×	×	?	\checkmark	\checkmark
XRootD	×	?	?	?	×	×	×	×	?	\checkmark	\checkmark

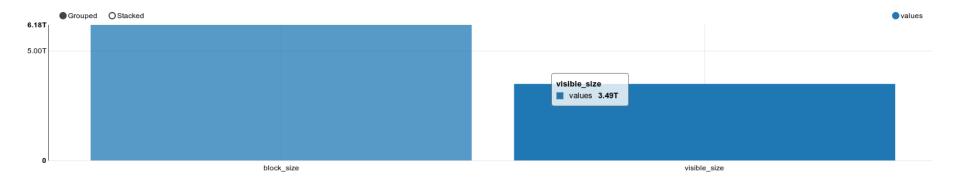

Unvailable	Guessable	Available
×	?	\checkmark

Service	Aname
Disk	True or False
C-time	Epoch timestamp
A-time	Epoch timestamp
M-time	Epoch timestamp
Туре	File/link/folder/
Directory	The directory containing the file
Filename	The basename of the file
extension	Trying to identify file type by reading extensions
Directory level 1 to 5	5 columns that contains the 5 first folder of the path
Option 1 to 5	5 columns that contains storage element specific values

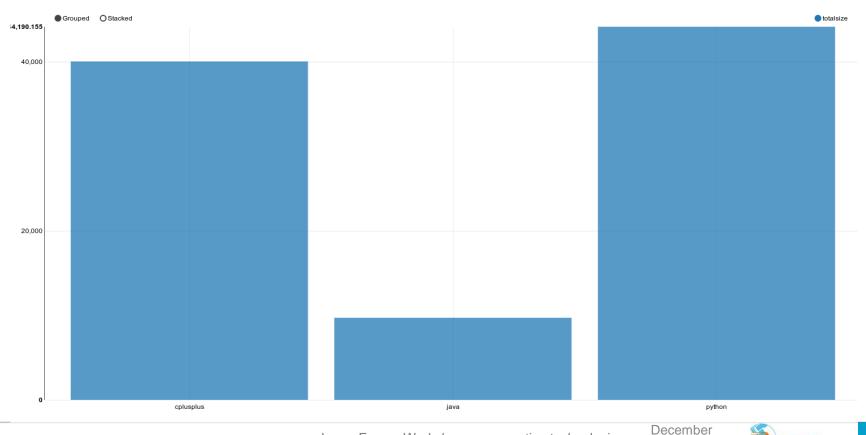
Edinsba



- Standalone Spark cluster
 - 4 virtual machines
 - 8 CPU per node
 - 32 GB Ram per node
- Storage
 - CephFS shared between all nodes
- Hive cluster
 - Ongoing tests on a separate platform


- Data already integrated :
 - PBS since 1st July 2019
 - DCache since mid September 2019
- Data to be integrated (in the coming weeks):
 HPSS
 - IRods
 - XRootD
 - SPS

File extensions repartition in # of file


File size vs real block size in home directory

Most used programming language in home directory

Japan-France Workshop on computing technologies

CCIN2P3

2nd 1209

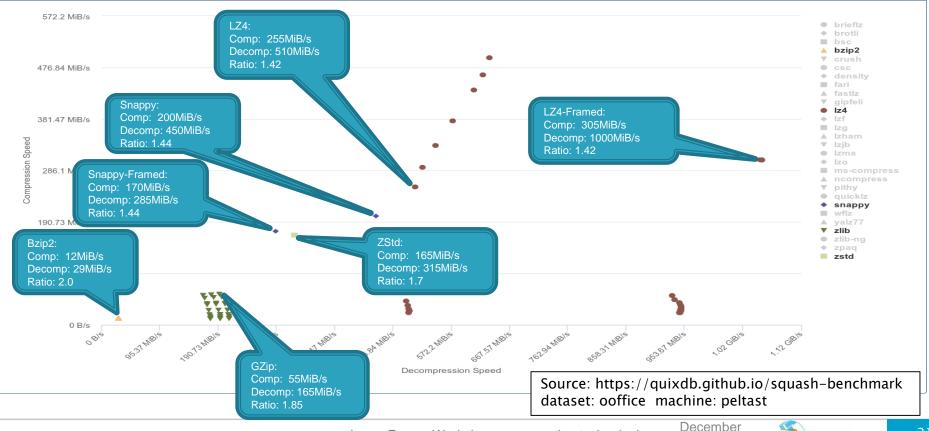
Conclusion

- This project is at an early stage:
 - Integration all storage elements.
 - Determine stats to compute on a regular basis.
 - Hive setup
 - Kerberos integration

- But we also have ideas for the future:
 - Add metadata for internal storage elements (TSM, database...).
 - Validate compliance of Data Management Plans.
 - Job file access/CPU analysis.

Thank you !

Questions and comments are welcome !


December

2nd 1209

Compression algorithm

COMPRESSION SPEED VS. DECOMPRESSION SPEED %

Japan-France Workshop on computing technologies

ecember 2nd 1209

CCINSP3

Compression matters :

- Compressed data = less network transfer.
- Compressed data = less storage.
- Choose the correct algorithm for the correct task

Compression	Splitable	Hadoop/Spark native support
Z-Standard	No	Yes
LZ4	No	Yes
LZ4-Framed	Yes	No
Snappy	No	Yes
Snappy-Framed	Yes	No
GZip	No	Yes
BZip2	Yes	Yes

Metadata conversion csv to parquet benchmark

format	size	time
Bz2	620 MB	2900s
GZip	1900 GB	11000s

Hadoop ecosystem

