

# Waiting Time Estimation in Batch System by DL

Wataru Takase Computing Research Center, KEK 2<sup>nd</sup> December, 2019

## KEK Batch System



## KEK Batch System: Piled up Waiting Jobs

- Available Job Slots: 10000
  - Limited by Number of CPU cores
- At the time of congestion, user jobs make a long stay in a job queue
  - Fairshare based scheduling
- Users may want to know when my jobs will start.





### Waiting Time Estimation in Batch system by Supervised DL

- Each job history and events are save to *lsb.acct* and *lsb.events* files:
  - Isb.acct: The batch job log file of LSF.
  - Isb.events: The LSF batch event log file used to display event history.
    - Job new, job accept, job start, job move, etc…



Input the job logs to a supervised DL model and try to estimate waiting time

#### Available information in Isb.acct and Isb.evnets

#### Used fields for the estimation

| Field                                                                                         | Description                                                      | Field         | Description                                                 |  |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|-------------------------------------------------------------|--|--|--|--|--|--|--|
| jobld                                                                                         | ID for the job                                                   | fromHost      | Submission host name                                        |  |  |  |  |  |  |  |
| userld                                                                                        | UNIX user ID of the submitter                                    | cwd           | Current working directory                                   |  |  |  |  |  |  |  |
| userName                                                                                      | User name of the submitter                                       | inFile        | Input file name                                             |  |  |  |  |  |  |  |
| options                                                                                       | Bit flags for job processing                                     | outFile       | Output file name                                            |  |  |  |  |  |  |  |
| numProcessors                                                                                 | Number of processors initially requested for                     | errFile       | Error output file name                                      |  |  |  |  |  |  |  |
|                                                                                               | execution                                                        | jobFile       | Job script file name                                        |  |  |  |  |  |  |  |
| jStatus                                                                                       | Job status                                                       | numAskedHosts | Number of host names to which job dispatching               |  |  |  |  |  |  |  |
| submitTime                                                                                    | Job submission time                                              | Humaskeunosts | will be limited                                             |  |  |  |  |  |  |  |
| beginTime                                                                                     | Job start time – the job should be started at or after this time | askedHosts    | List of host names to which job dispatching will be limited |  |  |  |  |  |  |  |
| termTime                                                                                      | Job termination deadline – the job should be                     | numExHosts    | Number of processors used for execution                     |  |  |  |  |  |  |  |
| COTTITUTO                                                                                     | terminated by this time                                          | execHosts     | List of execution host names                                |  |  |  |  |  |  |  |
| startTime                                                                                     | Job dispatch time – time job was dispatched for execution        | cpuTime       | CPU time consumed                                           |  |  |  |  |  |  |  |
| 17.                                                                                           |                                                                  | Сритппе       |                                                             |  |  |  |  |  |  |  |
| endTime                                                                                       | Job completion time                                              | runTime       | Time in seconds that the job has been in the run            |  |  |  |  |  |  |  |
| queue                                                                                         | Name of the job queue to which the job was                       |               | state                                                       |  |  |  |  |  |  |  |
|                                                                                               | submitted                                                        | jobName       | Job name                                                    |  |  |  |  |  |  |  |
| resReq                                                                                        | Resource requirement specified by the user                       | command       | Complete batch job command specified by the user            |  |  |  |  |  |  |  |
| dependCond                                                                                    | Job dependency condition specified by the user                   | IsfRusage     | resource usage information for the job                      |  |  |  |  |  |  |  |
| preExecCmd                                                                                    | Pre-execution command specified by the user                      |               | •••                                                         |  |  |  |  |  |  |  |
| https://www.ibm.com/support/knowledgecenter/en/SSWRJV_10.1.0/lsf_config_ref/lsb.acct.5.html 5 |                                                                  |               |                                                             |  |  |  |  |  |  |  |

## O. Preparation of Input Data

#### 1. Create CSV file from Isb.acct and Isb.events files.

| submit time         | pend time | user   | queue | start time          | end time            | num<br>processors | run time | cpu time |
|---------------------|-----------|--------|-------|---------------------|---------------------|-------------------|----------|----------|
| 2017-08-10 02:37:17 | 7         | user01 | h     | 2017-08-10 02:37:24 | 2017-08-17 17:02:15 | 1                 | 656691   | 12306    |
| 2017-08-10 02:37:18 | 13        | user02 | S     | 2017-08-10 02:37:31 | 2017-08-18 05:00:00 | 1                 | 699749   | 24178    |
|                     | •••       | •••    | •••   |                     |                     | •••               | •••      | •••      |

#### 2. Split the CSV file for each user.

| submit time         | pend time | user   | queue | start time          | end time            | num<br>processors | run time | cpu time |
|---------------------|-----------|--------|-------|---------------------|---------------------|-------------------|----------|----------|
| 2017-08-10 02:37:17 | 7         | user01 | h     | 2017-08-10 02:37:24 | 2017-08-17 17:02:15 | 1                 | 656691   | 12306    |
| •••                 | •••       | •••    | •••   | •••                 | •••                 | •••               | •••      | •••      |

| submit time         | pend time | user   | queue | start time          | end time            | num<br>processors | run time | cpu time |
|---------------------|-----------|--------|-------|---------------------|---------------------|-------------------|----------|----------|
| 2017-08-10 02:37:18 | 13        | user02 | S     | 2017-08-10 02:37:31 | 2017-08-18 05:00:00 | 1                 | 699749   | 24178    |
|                     | •••       | •••    | •••   |                     |                     | •••               | •••      | •••      |

## 0. Preparation of Input Data

#### 3. Enrich data

 Ex. Calculate "number of CPU cores currently in use" at the time of each job submission



## O. Preparation of Input Data

#### 4. Classify waiting times in 6 classes

| Waiting time      | Class |
|-------------------|-------|
| 0 to 10 mins      | 0     |
| 10 to 30 mins     | 1     |
| 30 min to 1 hour  | 2     |
| 1 to 3 hours      | 3     |
| 3 to 6 hours      | 4     |
| More than 6 hours | 5     |

### O. Preparation of Input Data

#### 5. Balance data

| Class | Number of data |                                       | Class | Number of data |
|-------|----------------|---------------------------------------|-------|----------------|
| 0     | 672908         |                                       | 0     | 31945          |
| 1     | 97056          |                                       | 1     | 31945          |
| 2     | 57547          |                                       | 2     | 31945          |
| 3     | 97829          |                                       | 3     | 31945          |
| 4     | 31945          |                                       | 4     | 31945          |
| 5     | 40797          | , , , , , , , , , , , , , , , , , , , | 5     | 31945          |

Random majority undersampling

### 1. Set up Fully-Connected Neural Network model



- Input data
  - Finished job logs during a certain period: 7 months

| Input job information from <i>lsb.acct</i> files |                             |  |  |  |  |  |  |
|--------------------------------------------------|-----------------------------|--|--|--|--|--|--|
| The last observed user's waiting time            | Run time currently spent    |  |  |  |  |  |  |
| Submission time of the above                     | Day of submission           |  |  |  |  |  |  |
| Number of cores currently in use                 | Submission time in 24 hours |  |  |  |  |  |  |
| Current CPU utilization efficiency               | Queue                       |  |  |  |  |  |  |
| Number of current waiting jobs                   |                             |  |  |  |  |  |  |

## 2. Train the model with TensorFlow using single NVIDIA Tesla K20 GPU



- Achieved 95% accuracy after a few hours training
- The training time depends on number of layers, number of neurons on each layer, input dataset size, and GPU power

### 3. Estimate by the Trained Model

- Used dataset for the training
  - Job histories from January, 2018 to August, 2018.
- Accuracy against the above dataset: 95%
- Accuracy against dataset of another period (September, 2018): 87%

• Usage situation changes constantly, it's better continuing to re-train our model periodically by using fresh finished jobs information.

## 4. Implemented Waiting Time Estimator as a Command

- A user inputs 2 parameters: Queue, Username(option)
  - The other necessary information is collected automatically.
    - The last observed user's waiting time
    - Submission time of the above
    - Run time currently spent
    - Day of submission
    - Number of cores currently in use
    - Number of current waiting jobs
    - Submission time in 24 hours

```
takase—53×5

[[takase@cw14 ~]$ bpredict -q l -u takase

Expected waiting time: 0~599 sec (prob. 92.1123 %)

[takase@cw14 ~]$

[takase@cw14 ~]$
```

## Comparison of Inference Performance on CPU, GPU, FPGA

- Prepare a workstation which has CPU, GPU, and FPGA.
- Compare waiting time inference speeds.





## Comparison of Inference Performance on CPU, GPU, FPGA

• GPU is the best.

|                                                                                  |                    | 1 mougnput companies        |          | Y Trace compar          |                            |       |                         |
|----------------------------------------------------------------------------------|--------------------|-----------------------------|----------|-------------------------|----------------------------|-------|-------------------------|
| Inference Speed<br>Comparison                                                    | Inference<br>/ sec | vs. Xeon<br>1 core<br>Numpy | Accuracy | Inference/sec<br>/ Watt | vs. Xeon<br>1core<br>Numpy | Price |                         |
| 4-layer FC (W:32, A:32) on<br>Intel Xeon W-2123 (3.6GHz)<br>1 CPU core,<br>Numpy | 8.4                | 1                           | 0.956    | 0.095                   | 1                          | €270  | (intel) Xeon' processor |
| 6-layer FC (W:1, A:2) on FPGA Virtex 7 XC7VX690T-2                               | 132.7              | 15.8                        | 0.936    | 1.685                   | 17.7                       | €3000 |                         |
| 4-layer FC (W:32, A:32) on<br>GPU NVIDIA Quadro P4000,<br>Cupy                   | 1417.9             | 168.8                       | 0.956    | 8.861                   | 93.3                       | €1350 | OUADRO<br>OUADRO        |

Throughput comparison Throughput/Watt comparison

## Our Interesting Topics

- Is it applicable to the batch system at CC-IN2P3?
  - We got CC-IN2P3 batch team's consent for sharing the CC-IN2P3's data on 10<sup>th</sup> October.
- Run time estimation.
  - Based on user's command, input file, queue, ···
- Make batch system resource usage efficiently by DL:
  - Ex. Estimate batch system congestion
- Anomaly detection by unsupervised DL or ML.
- Reduce training time by using many GPUs.
- Reduce inference time by using GPUs and FPGAs.