
Pattern detection in server log messages with
support for multiple log management systems

Master 1 Internship with the CC-IN2P3 Supervised by: Fabien Wernli

Louise Harding

Plan

● Introduction
● Problem
● Goals
● Workflow
● Data Analysis
● SEQUENCE

○ How it works - Scanner, Analyser, Parser
○ Extensions for this project

● Results
● Limitations
● Next steps - Machine Learning/Anomaly detection
● Conclusion

2

Introduction

Why is logging important?

● Supplies information continuously on the activities of
hardware, software and other equipment.

● Often first, if not only, alert of a problem.
● Critical for issue diagnosis, both real time and post

mortem.
● State: Current and historical, normal and abnormal
● Audits and security

 3

4

Problem

● approximately 100 million
system logs every day.

● Uses a pattern database, for
the analysis, whose patterns
are created by hand.

● Issues: Scalability and
maintenance.

● Events constantly changing.

● Approx 75-80% unknown.
5

Goals

● Implement a pattern recognition algorithm into the message flow, to assist
or automate the manual pattern creation.

● By adapting the SEQUENCE module implemented in Go language for the
CC-IN2P3's data and workflow.

● Overall goal is to have 90% or more of the messages known in production.

● Ideally return the modified software back to the open source community with
support for Syslog’s patternDB and Logstash’s Grok pattern parsers.

6

Workflow and other considerations

● Volume
● Variety
● Constant change
● No preprocessing

7

Data analysis

Log messages take many forms:

Length: 2-3 words to > ½ page of text.

No strict rules for construction, order or
contents.

Not confined to one language.

Text and/or JSON format.

Elements that do follow rules that can be
extracted.

8

Examples

{"level":"debug","msg":"unregistering reader", "reader-id":"8c417dec-e854-469d-9744-c46f5bd14b2b",
"time":"2019-04-09T09:08:23+02:00"}

warning: maildrop/10E66A7: error writing 1A648332: queue file write error

lcas_userban.mod-plugin_confirm_authorization(): checking banned users in /etc/lcas/ban_users.db

Callout to "LCMAPS" returned local user (service file): "ops008

134.158.172.113:46408 [18/Apr/2019:16:43:43.255] frontend puppetserver/ccpuppet03 1/0/183322 7479 cD
41/41/41/12/0 0/0

9

10

SEQUENCE

Open source module using Go Lang written by Jian Zhen

Tested on a small range of common log messages, but not the variety seen at CC

It consists of:

- Scanner - splits messages into pieces called tokens
- Analyser - compares the sets of tokens to find patterns
- Parser - tries to match new messages to already found patterns

11

Scanner

● Breaks the message into pieces: tokens

● Uses three separate processes, one for Hexidecimal values, one for

Date/Time formats, one for everything else to find the tokens.

● Reads each log message only once, character by character and passes

each character simultaneously to the three processes.

● Each process stops when it finds a valid value or can’t continue as it hits

something invalid.

● Fast: > 200,000 msg/s

12

Scanner cont.

● Token Types:
○ Float
○ Integer
○ DateTime
○ IPv4, IPv6
○ Urls (http/https)
○ Literal
○ MAC address

13

Analyser
1. Builds a trie from all the tokenised

messages.

2. Identifies and merges the tokens of
the same type at the same level
with the same parent and child
node.

14

Analyser cont.

1. Looks for email addresses and hostnames and tags them.

2. Uses prekeys like ‘from; and ‘to’ to tag source and destination variables.

3. Uses keywords, such as error, or file, to apply status or object tags for

example.

4. Tries to find IP and port combinations.

15

Parser

● Used for matching new messages to existing known patterns.

● If not matched add to the analyser for processing.

16

Extension of SEQUENCE

To output for custom parsers and to deal with the volume of log messages at
CC-IN2P3, we needed to:

● Added a database so SEQUENCE could run continuously.
● Added functionality to handle multi-line messages
● New approach to handle the volume of messages.
● Create a pattern ID that is reproducible always for the same pattern.
● Preserve examples with the patterns for testing with patternDB.
● Translate SEQUENCE patterns to use with patternDB/Grok parsers.

17

SEQUENCE pattern and Logstash Grok example

SEQUENCE: %action% from %srcip% port %srcport%

LOGSTASH:

18

PatternDB output

19

Syslog-ng pattern db parser

20

21

 SEQUENCE Testing

Syslog-ng PatternDB parser testing

Results

22

Results: Production

Known/unknown in production:

SEQUENCE 51.6%

Other known 27.4

Unknown 21%

Runs every 15 mins, takes 7
seconds to process 100,000.

23

Limitations

● Needs a few examples to find a good pattern.

● Some log messages have a pattern that matches a token type incorrectly.

● Keywords can cause more than one pattern for similar log messages.

● Struggles with some key/value pairs when the value is not delimited.

● Converting between different parser types will never be exact.

24

Machine Learning - Where does this fit?

25

The big picture

26

30+ billion log
messages /
year

~ 5000-10000
 patterns

ML?

Possible next steps

● Machine Learning - Anomaly Detection
○ Types of anomalies

■ Known events - frequency

■ New/unseen events

■ Change in sequence of events

■ Change in event parameters

○ Considerations

■ Frequency of change/maintenance

■ Definition of ‘normal’

■ Volume of messages

●

27

■ Privacy?

■ How do we communicate anomalies?

■ Feedback - dealing with false positives

Conclusion

● With close to 80% known log messages, well on our way to the goal of 90%
● Pattern discovery and creation has made the maintenance of the patternDB

more manageable.
● With the extra meta-data and patternID’s in Elastic Search, easier to search

when diagnosing issues or looking for information,
● First steps in preprocessing the data for Machine Learning approaches like

anomaly detection have been taken.
● On track for release back into Open Source Community.

28

Supervised vs unsupervised

29

Supervised learning is where you have input variables (x) and an output variable (Y) and you use an
algorithm to learn the mapping function from the input to the output.

Unsupervised learning is where you only have input data (X) and no corresponding output
variables.The goal for unsupervised learning is to model the underlying structure or distribution in the
data in order to learn more about the data.

What approach to use? - Latest research
● Unsupervised, semi-supervised?
● Neural network using Long Short Term Memory (LSTM) for time series prediction to

model frequency per pattern.
○ Compare predicted to actual - significant difference = anomaly

● LSTM for learning log message sequences or,
● Learned finite state machines, markov models.

Analyser: Trie Introduction

● data structure that

specialises in working

with strings

● allows for very fast

search and retrieval of

values.

● Most common use -

autocomplete

30

Finite State Machine - Hexidecimal

1. First character
2. Second character
3. Third character
4. Fourth character
5. Colon
6. Space

31

Date Time

Supports 49 different formats

32

