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Introduction

Why is logging important?

● Supplies information continuously on the activities of 
hardware, software and other equipment.

● Often first, if not only, alert of a problem.
● Critical for issue diagnosis, both real time and post 

mortem.
● State: Current and historical, normal and abnormal
● Audits and security
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Problem

● approximately 100 million 
system logs every day.

● Uses a pattern database, for 
the analysis, whose patterns 
are created by hand.

● Issues: Scalability and 
maintenance.

● Events constantly changing.

● Approx 75-80% unknown.
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Goals

● Implement a pattern recognition algorithm into the message flow, to assist 
or automate the manual pattern creation.

● By adapting the SEQUENCE module implemented in Go language for the 
CC-IN2P3's data and workflow.

● Overall goal is to have 90% or more of the messages known in production.

● Ideally return the modified software back to the open source community with 
support for Syslog’s patternDB and Logstash’s Grok pattern parsers.
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Workflow and other considerations

● Volume
● Variety
● Constant change
● No preprocessing
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Data analysis

Log messages take many forms:

Length: 2-3 words to > ½ page of text.

No strict rules for construction, order or 
contents.

Not confined to one language.

Text and/or JSON format.

Elements that do follow rules that can be 
extracted.
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Examples

{"level":"debug","msg":"unregistering reader", "reader-id":"8c417dec-e854-469d-9744-c46f5bd14b2b", 
"time":"2019-04-09T09:08:23+02:00"}

warning: maildrop/10E66A7: error writing 1A648332: queue file write error

lcas_userban.mod-plugin_confirm_authorization(): checking banned users in /etc/lcas/ban_users.db

Callout to "LCMAPS" returned local user (service file): "ops008

134.158.172.113:46408 [18/Apr/2019:16:43:43.255] frontend puppetserver/ccpuppet03 1/0/183322 7479 cD 
41/41/41/12/0 0/0
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SEQUENCE

Open source module using Go Lang written by Jian Zhen

Tested on a small range of common log messages, but not the variety seen at CC

It consists of:

- Scanner - splits messages into pieces called tokens
- Analyser - compares the sets of tokens to find patterns
- Parser - tries to match new messages to already found patterns
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Scanner

● Breaks the message into pieces: tokens

● Uses three separate processes, one for Hexidecimal values, one for 

Date/Time formats, one for everything else to find the tokens.

● Reads each log message only once, character by character and passes 

each character simultaneously to the three processes.

● Each process stops when it finds a valid value or can’t continue as it hits 

something invalid.

● Fast: > 200,000 msg/s
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Scanner cont.

● Token Types:
○ Float
○ Integer
○ DateTime
○ IPv4, IPv6
○ Urls (http/https)
○ Literal
○ MAC address
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Analyser
1. Builds a trie from all the tokenised 

messages.

2. Identifies and merges the tokens of 
the same type at the same level 
with the same parent and child 
node.
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Analyser cont.

1. Looks for email addresses and hostnames and tags them.

2. Uses prekeys  like ‘from; and ‘to’ to tag source and destination variables.

3. Uses keywords, such as error, or file, to apply status or object tags for 

example.

4. Tries to find IP and port combinations.

15



Parser

● Used for matching new messages to existing known patterns.

● If not matched add to the analyser for processing.
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Extension of SEQUENCE

To output for custom parsers and to deal with the volume of log messages at 
CC-IN2P3, we needed to:

● Added a database so SEQUENCE could run continuously.
● Added functionality to handle multi-line messages
● New approach to handle the volume of messages.
● Create a pattern ID that is reproducible always for the same pattern.
● Preserve examples with the patterns for testing with patternDB.
● Translate SEQUENCE patterns to use with patternDB/Grok parsers.
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SEQUENCE pattern and Logstash Grok example

SEQUENCE:     %action% from %srcip% port %srcport%

LOGSTASH:
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PatternDB output
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Syslog-ng pattern db parser
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 SEQUENCE Testing

Syslog-ng PatternDB parser testing 

Results
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Results: Production

Known/unknown in production:

SEQUENCE 51.6%

Other known 27.4

Unknown 21%

Runs every 15 mins, takes 7 
seconds to process 100,000. 
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Limitations

● Needs a few examples to find a good pattern.

● Some log messages have a pattern that matches a token type incorrectly.

● Keywords can cause more than one pattern for similar log messages.

● Struggles with some key/value pairs when the value is not delimited.

● Converting between different parser types will never be exact.
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Machine Learning - Where does this fit?
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The big picture
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30+ billion log 
messages / 
year

~ 5000-10000
     patterns

ML?



Possible next steps

● Machine Learning - Anomaly Detection
○ Types of anomalies

■ Known events - frequency

■ New/unseen events

■ Change in sequence of events

■ Change in event parameters

○ Considerations

■ Frequency of change/maintenance

■ Definition of ‘normal’

■ Volume of messages

●
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■ Privacy?

■ How do we communicate anomalies?

■ Feedback - dealing with false positives



Conclusion

● With close to 80% known log messages, well on our way to the goal of 90%
● Pattern discovery and creation has made the maintenance of the patternDB 

more manageable.
● With the extra meta-data and patternID’s in Elastic Search, easier to search 

when diagnosing issues or looking for information,
● First steps in preprocessing the data for Machine Learning approaches like 

anomaly detection have been taken.
● On track for release back into Open Source Community.
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Supervised vs unsupervised
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Supervised learning is where you have input variables (x) and an output variable (Y) and you use an 
algorithm to learn the mapping function from the input to the output.

Unsupervised learning is where you only have input data (X) and no corresponding output 
variables.The goal for unsupervised learning is to model the underlying structure or distribution in the 
data in order to learn more about the data.

What approach to use? - Latest research
● Unsupervised, semi-supervised?
● Neural network using Long Short Term Memory (LSTM) for time series prediction to 

model frequency per pattern.
○ Compare predicted to actual - significant difference = anomaly

● LSTM for learning log message sequences or,
● Learned finite state machines, markov models.



Analyser: Trie Introduction

● data structure that 

specialises in working 

with strings

● allows for very fast 

search and retrieval of 

values.

● Most common use - 

autocomplete
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Finite State Machine - Hexidecimal

1. First character
2. Second character
3. Third character
4. Fourth character
5. Colon
6. Space

31



Date Time 

Supports 49 different formats
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