
Tutorial session on quantum circuits
and quantum algorithms

December 3rd, 2019

using simulation software:

Quantum++ (with Eigen 3), author Vlad Gheorghiu
myQLM, Atos Quantum Lab

2

Elementary logic gates:
one-bit logic gates

f :{0,1}→{0,1}

the identity: the NOT gate:

a = a ā = 1−a

(in binary arithmetic)

3

Elementary logic gates:
two-bit logic gates

f :{0,1}2→{0,1}

the AND gate:

a∧b = ab

4

Elementary logic gates:
two-bit logic gates

f :{0,1}2→{0,1}

the OR gate:

a∨b = a+b−ab

5

Elementary logic gates:
two-bit logic gates

f :{0,1}2→{0,1}

the XOR (exclusive OR) gate:

a⊕b = a+b (mod 2)

6

Elementary logic gates:
two-bit logic gates

f :{0,1}2→{0,1}

the NAND (negated AND) gate:

a↑b = a∧b = ab = 1−ab

7

Elementary logic gates:
two-bit logic gates

f :{0,1}2→{0,1}

the NOR (negated OR) gate:

a↓b = a∨b = a+b−ab
= 1−a−b+ab

8

How many one-bit and two-bit functions exist ?

one-bit = 4 functions two-bit = 16 functions

we have the constant
functions:

f (x) = 0 ∀ x
f (x) = 1 ∀ x

f (a,b) = 0 ∀ a,b
f (a ,b) = 1 ∀ a ,b

9

Two more special gates, for building circuits

b

FANOUT (COPY) CROSSOVER (SWAP)

10

11

Universal (classical) gates

f : {0,1}m→{0,1}nAny function can be constructed from the elementary gates:
 AND, OR, NOT and FANOUT !

We say that AND, OR, NOT and FANOUT constitute a universal set of gates for
the classical computation (see the proof in Appendix A).

A smaller universal set is NAND and FANOUT:

OR can be obtained from NOT and AND: (De Morgan's identities)

and NOT can be obtained from NAND and FANOUT:

a∨b = ā∧b̄

a↑a = a∧a = 1−a2
= 1−a = ā

here we have FANOUT and NAND

12

Most of the logic gates discussed up to now are irreversible.

f : {0,1}2→{0,1}The Boolean functions erase a bit of information !

a∧b = 0 → a = ? , b = ?

13

Can we embed any irreversible function
into a reversible function ?

YES

f : {0,1}m → {0,1}n

~
f :{0,1}m+n

→ {0,1}m+n

~
f (x , y) = (x ,[y+ f (x)](mod 2n

))

irreversible function:

reversible function:

defined such that:

where x represents m bits, while y and f(x) represent n bits. Since the embedding
function is bijective, it will be reversible! So at the logic level it is possible, with
the price of introducing more dimensions in the calculations (ancillary bits y).

14

Why reversible computing ?

15

This is related to the question :
how much can we increase the
density of the electronic components
on a circuit ? What happens when we
reach the atomic scale ?

16

17

There is a lower limit per
logic operation for the
dissipated energy in the case
of the irreversible logic gates :

(same order of magnitude as
the thermal noise)

The number of bits at output is
larger than the number of bits
at input : the “disappearance”
of one bit is seen as a loss of
information.

ln (2)⋅k⋅T = 4.11⋅10−21J (T=298K)

(R. W. Keyes, IBM)

18

Reversible logic reflects closer a number
of fundamental principles of physics, like
the reversibility of the fundamental laws
of physics (like Newton's equations in
classical mechanics).

(Feynman, Fredkin, Toffoli, ...)

19

A simple reversible classical gate: the controlled-NOT (CNOT)

20

the control bit:

the target bit:

reversibility

The classical CNOT gate

(CNOT)2=I , CNOT−1=CNOT

(a ,b) → (a ,a⊕b) → (a ,a⊕(a⊕b))=(a ,b)
two CNOT gates, applied
one after the other:

so CNOT is self-inverse:

If the target bit is set to 0 (b=0) then CNOT becomes the FANOUT gate:

(a ,0) → (a ,a)

... but two-bit reversible gates are not enough for universal computation !
 We can not construct the NAND gate ...

21

The CNOT classical gate with Quantum++

(see documentation here: qpp-doc/hhtml/index.html)

Dynamic_bitset bits{n}; // create n classical bits
 // in the initial state 000
 // bit zero is the least significant bit

bits.reset(i); // set to false bit “i”
bits.reset(); // set to false all bits

bits.set(i, bool value = true); // set bit “i” to “value”
bits.set(); // set all bits to true

bits.rand(i, double p = 0.5); // randomize bit “i”
bits.rand(double p = 0.5); // randomize all bits
 // according to a Bernoulli(p)
 // distribution (coin toss)

Bit_circuit(n); // construct a circuit with n bits
Bit_circuit(bits); // construct and initialize

Bernoulli distribution: prob(1) = p, prob(0) = 1-p

22

The CNOT classical gate with Quantum++

bc.CNOT(i, j); // apply a CNOT gate having bit “i” as control
 // and bit “j” as target

bc.get(i); // get value of bit “i”

cmat U = gt.CNOT; // matrix form of CNOT
 // gt is the singleton instance of qpp::Gates
 // qpp::cmat is Eigen::MatrixXcd (complex/double)
disp(U); // print the matrix

Exercise 1: write the circuit of the classical (two-bit) CNOT gate
and test it on few values. Apply CNOT two times and check if it is
equal to the identity.

23

Three-bit reversible gates: the Toffoli gate
(controlled-controlled-NOT, or C2NOT)

control bit [0]:

control bit [1]:

target bit [2]:

Bit_circuit bc{3}; // initialize a circuit with 3 bits
bc.TOF(0, 1, 2); // apply a Toffoli gate

Exercise 2: build the NAND function from C2NOT
(hint: set c = 1 and verify that c' = a NAND b)

24

Quantum bits (qubits)

A qubit is a quantum object: a microscopic system whose state and evolution
are governed by the laws of quantum mechanics. In order to keep a good
resemblance with the classical bit, this system will be chosen to have only two
possible states, corresponding to some (measurable) physical property.

The two states are orthogonal and any arbitrary state the system can be described
as a linear combination (superposition) of those two states:

|α|
2
+|β

2
|=1 α ,β∈ℂ

(in the formalism of the quantum mechanics, the notations above are called ket vectors)

We will work in a two dimensional Hilbert space (an abstract
vector space provided with an inner product, which is also complete).

25

Vector algebra with qubits

Since we describe our space with two coordinates, we can write the two basis vectors:

= (10) = (01)

and their superposition in the state vector: = α(10)+β(
0
1) = (αβ)

normalized
orthogonal
vectors:

26

The 1st postulate of quantum mechanics:
the state vector (or wave function) completely describes the state of the physical system.

The evolution in time of the state vector
is governed by the Schrödinger equation:
(H is the Hamiltonian, a self-adjoint operator)

Actually, α and β are functions of time:

27

Measuring the useful property of the qubit

The 2nd postulate of the quantum mechanics:
We associate with any observable a self-adjoint operator on the Hilbert space of the
states. The only possible outcome of a measurement is one of the eigen-values of the
corresponding operator.

σ z = (1 0
0 −1)A single-qubit operator can be represented by a 2x2 matrix:

(described within a given orthonormal vector base)

σ z = (1 0
0 −1) (10) = (10) = +1

σ z = (1 0
0 −1) (01) = (0

−1) = −1

and are eigen-vectors of the operator with eigen-values “+1” and “-1”σ z

28

Measuring the useful property of the qubit

The 2nd postulate of the quantum mechanics:
If the expand the state vector over the orthonormal basis formed by the eigen-vectors
of the operator:

then the probability that a measurement at time t results in outcome “+1” or “-1”
is given by:

29

z

The quantified spin and the choice of
the direction of the measurement

σ z = (1 0
0 −1)

30

x

The quantified spin and the choice of
the direction of the measurement

z
σ x = (0 1

1 0)

31

x

The quantified spin and the choice of
the direction of the measurement

z

y

σ y = (0 −i
i 0)

32

x

The quantified spin and the choice of
the direction of the measurement

z

y

σ x , σ y , σ z Pauli matrices (operators), also σ1 , σ2 , σ3

33

The eigen-vectors of the spin operators (Pauli)
corresponding to eigen-values “+1” and “-1”

34

Example of a measurement

Let's suppose that a spin is in the eigen-state of the operator.

This state can be expanded within the orthonormal vector basis given by
the two eigen-vectors of the operator like this:

and the probabilities to measure “+1” and “-1” along the “x” axis will be:

σ z

σ x

This is a reference to
the Stern-Gerlach
experiment.

35

The 3rd postulate of quantum mechanics

If a system is described by the wave vector and we
measure σ

z
 obtaining the outcome s

n
(s

1
= +1 and s

2
= -1), then immediately

after the measurement the state of the system is given by:

P
1
 and P

2
 are called projection operators and we have P

1
 + P

2
 = I.

The probability of obtaining the outcome s
n
 is given by:

and the average value of the observable σ
z
 is given by:

the diagonal representation of an operator

36

Single qubits with Quantum++

 ket sigz0 = st.z0; // st = singleton instance of qpp::States
 // qpp::ket is Eigen::VectorXcd
 ket sigz1 = st.z1;

 ket sigx0 = st.x0;

 ket sigx1 = st.x1;

 ket sigy0 = st.y0;

 ket sigy1 = st.y1;

Exercise 3: print the components of the 6 vectors (using the function
disp(ket v)). Note that, for instance, sigx0[0] is the complex coefficient
multiplying the basis vector .

Exercise 4: calculate the probabilities of the Stern-Gerlach experiment, as
explained on the previous slide.

37

Single-qubit gates

Exercise 5: write a code to verify these
transformations through the Pauli operators.

σ x , σ y , σ z

38

A measurement with Quantum++

cmat basisZ = hevects(gt.Z); // form a matrix with the
 // eigen-vectors of the sigma-z gate

dyn_col_vect<double> evalsZ = hevals(gt.Z); // the eigen-values
 // of sigma-z

Build a qubit in a generic state in the basis:

ket sigma = alpha * st.z0 + beta * st.z1;

and do a measurement using the operator:

auto meas_sigz = measure(sigma, basisZ);

After one measurement, the result is given by:

idx res = std::get<RES>(meas_sigz);
double value = evalsZ[res];

σ z

σ z

39

Exercise 6: build a generic state and do several measurements
in order to verify the second postulate of the quantum mechanics
(the probability of the possible outcomes of one measurement).

40

Other single-qubit gates

The Hadamard gate:

Transforms the computational basis:

41

The generic state of a qubit in spherical coordinates

we can write

Because:

● the two coefficients and are complex α β

● we have the total probability normalization condition

● a state vector is defined only up to a global phase of no physical significance
(we can take one of the coefficients pure real)

42

Other single-qubit gates

The phase-shift gate:

43

Unitary transformations

An operator U is said to be unitary if:

The adjoint operator is obtained by transposition followed by complex
conjugate of all the matrix elements of the operator matrix.

Unitary operators act on vector in Hilbert space in a way analogous to
rotations in Euclidean space: they preserve both the length of a vector
and the angle between two vectors.

In quantum mechanics unitary operators are very important, because if the
Hamiltonian from the Schrödinger equation is time independent, the solution
can be written as:

44

The time independence of the Hamiltonian

The Hamiltonian operator corresponds to the sum of the
kinetic and potential energies of all the particles in the
system, i.e. the total energy.

If the Hamiltonian operator does not depend on time, it
means that the total energy of the system remains constant
in time, it is conserved (which happens when the system is
isolated from the outer world).

This conclusion belong to the formalism of both classical
and quantum mechanics.

45

Universality of Hadamard and phase-shift gates

Any unitary operation on a single qubit can be constructed using only
Hadamard and phase-shift gates. In particular, the generic state can be
reached starting from as follows:

Exercise 7: obtain from using the above method.

46

An important remark

Because the generic state can take an infinity of values, (α
and are complex numbers) β we will have an infinity of possible single-qubit quantum gates.
For the classical bit we can have only the identity, the NOT and the COPY gates.

This has a consequence in the presence of the errors, since all the real numbers involved in
the construction of the unitary operators are internally represented with a limited precision.

47

The no-cloning theorem

Contrary to the classical case, it is not possible to clone (COPY or FANOUT)
a generic quantum state.

The equivalent of this: does not exist in the quantum case.

It is impossible to build a machine that operates unitary transformations and
is able to clone the generic state of a qubit (see Appendix B for a proof).

This has important consequences and leads to interesting consequences like
quantum cryptography.

The possibility of cloning would also invalidate the uncertainty relation of
Heisenberg: we would be able to simultaneously measure with infinite
precision two physical properties of the system.

48

A generic two-qubit state

Two total vector space of the two qubits is the result of a tensor product,
the computational base of the resulting space is given by the 4 possible
combinations by tensor product of the computational basis of each of the
two qubits.

α2+β2+γ2+δ2=1

49

The quantum (two-qubit) CNOT gate

The state of target qubit (y) flips only if the control qubit (x) is in the state.

50

A circuit for the SWAP gate using CNOT gates

=

(see proof in Appendix C)

51

Entanglement of two qubits

Contrary to the single-qubit gates, the CNOT gate can generate entangled
(non-separable) states:

Exercise 8: built a system with two qubits and apply the CNOT gate
(gt.CNOT) to different combined states. Compose CNOT from the flip
gate gt.X (the Pauli x-operator) applied in controlled mode:

ket result = applyCTRL(psi, gt.X, {0}, {1});

See in Appendix D the Bell basis made of four entangled states.

Up to now, the largest objects which can be obtained in entangled states are small crystals.

52

A word about storing data on qubits

a network of 3 qubits: the application
of the 3 Hadamard gates is synchronized
and in the total product state we have a
superposition of the values from 0 to 7.

53

Universal quantum gates

Any unitary operation in the Hilbert space of n qubits, U(n) can be
decomposed into one-qubit and two-qubit CNOT gates.

● we need few more special gates, like the controlled-U gate,
where the U operator is applied to the target qubit only if the
control qubit is in the state.

● the controlled-U gate can be generalized to the Ck-U gate, with
k control qubits.

● a particular Ck-U is the C2-NOT gate, or Toffoli gate; this a circuit implementing the
Toffoli gate, using CNOT, Hadamard and the unitary operator V:

.....

where

54

and finally we come to the conclusion:

1) a generic operator U(n) can be decomposed by means of Ck-U gates

2) any Ck-U gate (k > 2) can be decomposed into Toffoli and controlled-U gates

3) the C2-NOT gate (Toffoli) can be implemented using CNOT, controlled-U and
Hadamard gates

4) for any single-qubit rotation U, the controlled-U operation can be decomposed
into single-qubit and CNOT gates

Universal quantum gates

55

Unitary errors

Any quantum computation is given by a sequence of quantum gates applied to some initial
state:

If the errors are unitary (no coupling to the environment, but any realistic implementation
of a unitary operation will involve some error, since unitary operators form a continuous
set), instead of operators U

i
 we apply slightly different operators V

i
:

Therefore, after n iterations we obtain:

Unitary errors accumulate at worst linearly with the
length of the quantum computation n, while stochastic
errors are randomly directed and give a more favorable
growth √n.

56

Quantum information: teleportation

Alice owns a two level system in some unknown state:
and wishes to send this qubit to Bob using only a classical communication
channel (we know that Alice can not clone that state into a quantum copy).

Alice can not simply measure the state, because it will immediately destroy
that state with the price of obtaining only one bit of information (describing
the generic state requires an infinite amount of classical information).

Quantum teleportation is possible, providing that Alice and Bob share an
entangled pair of qubits.

For instance, starting from the
computation base we can create
the entangled state using:

57

Quantum information: teleportation

The three qubit state is given by the tensor product:

Alice will let her qubit interact with her half of the Bell pair, which means that she
will perform a measurement not in the computational basis but in the Bell basis.
The three-qubit state can be written in the Bell basis after some transformations:

and after the application of the two last gates we obtain:

58

Quantum information: teleportation

this is the circuit for teleportation:

Finally, Alice makes a measurement on his two qubits and sends the result to Bob,
in the form of two classical bits (0, 1) which correspond to the computational basis.
If Bob chooses to apply a unitary operator U to his qubit according to the pair of bits
sent by Alice as in next table, he will obtain exactly the initial generic state which
Alice wanted to transmit:

bit
0

bit
1

59

Quantum information: teleportation

Remark: before the state “materializes” at Bob's side, the
measurement at Alice's side destroys its “original” (the no-cloning
theorem).

60

Quantum information: teleportation

Exercise 9: write the code for the teleportation.

Hint: construct the last operator to be applied to Bob's qubit
by using the three Pauli operators and their relations:

ket psi_a = randket(2); // a random generic state

ket phi_AB = st.b00; // the psi+ Bell state

ket input_aAB = kron(psi_a, phi_AB); // create the global input
 // state with a direct
 // (tensor) product

auto results = measure_seq(input_aAB, {0, 1}); // measure only a
 // part of the
 // multi-part state
 // vector

σ xσ y=iσ z , σ yσ z=iσ x , σ zσ x=iσ y

61

Function evaluation

(see Appendix A for the classical case)

This is the basic task performed by a classical computer!

f : {0,1}n→{0,1}

If we start from the classical case, each minterm is implemented in a quantum
computer by a generalized Cn-NOT gate. In general the number of minterms
grows exponentially with the number n of (qu)bits and we can not evaluate the
function f efficiently (i.e. with a number of elementary gates polynomial in n).

Embedding the irreversible function f into a reversible function is equivalent with
finding the appropriate unitary transformation U

f
 using an ancillary qubit :

62

Quantum circuits implementing the two-bit binary functions: only 8 functions are shown
(from a total of 16) since for the other 8 functions, by applying a NOT () to the
ancillary qubit.

σ xf 15−i=f i

Function evaluation

63

=

Function evaluation

Example: a binary function of three qubits which equals to 1 only for 3 combinations
of values out of the 8 possible (there will be only 3 minterms to evaluate):

x2∧x1∧x0 , x2∧x1∧x0 , x2∧x1∧x0

(a) circuit with 3
 C3-NOT gates

(b) simplified circuit
x0+x0=1

64

 if we need qubits to load

 an integer , then

 we need qubits to store

 the output

Evaluation of x2 for 2-qubit input

n=log2 N

x∈[1,N]

2n=log2 N
2

x2
∈[1,N 2

]

Note that:

This corresponds to 4 binary functions (as in previous slides), which can be
evaluated reversibly using 4 ancillary qubits.

65

Evaluation of x2 for 2-qubit input

The function table:

(a) with the 4 minterms (b) simplified

ancillary qubit never used

66

Real run on IBM Q processors with Qiskit

IBM Q - quantum computing for researchers, www.ibm.com/quantum-computing/

Qiskit - open-source quantum computing software development framework, qiskit.org

IBM Q account: qiskit.org/ibmqaccount

Tutorials: github.com/Qiskit/qiskit-iqx-tutorials.git

See 3_the_ibmq_account.html for information about the providers and the backends
they offer (properties and configuration).

1_getting_started_with_qiskit.html is the HTML export of the jupyter notebook
doing the “getting started” tutorial example.

67

Real run on IBM Q processors with Qiskit

import numpy as np
from qiskit import *

circ = QuantumCircuit(3)
circ.h(0)
circ.cx(0, 1)
circ.cx(0, 2)

meas = QuantumCircuit(3, 3)
meas.barrier(range(3)
meas.measure(range(3), range(3))
qc = circ + meas

The “getting started” example
from the Qiskit tutorials with
IBM Q backend (ibmqx2):
● 5 qubits, 1024 shots

creates a 3-qubit entangled state,
GHZ (Greenberger-Horne-Zeilinger):

68

from qiskit import IBMQ

IBMQ.load_account()

IBMQ.providers()

provider = IBMQ.get_provider(group='open')

provider.backends()

backend = provider.get_backend('ibmqx2')

job_exp = execute(qc, backend = backend)

job_monitor(job_exp)

result_exp = job_exp.result()

counts_exp = result_exp.get_counts(qc)

plot_histogram(...

Real run on IBM Q processors with Qiskit

69

Real run on IBM Q processors with Qiskit

Exercise 10: write the Quantum++ code for the “getting started”
Qiskit example and check with simulations the correct results
of the measurement of an GHZ state.

QCircuit qc{3, 3}; // create a circuit with 3 qubits and
 // 3 classical bits (for the read-out)

qc.measureZ(0, 0); // make a measurement (sigma-z) of
 // qubit “0” and transfer the result
 // to the classical bit “0”

QEngine engine(qc); // initialize a quantum engine

engine.execute(shots, false); // execute a number of “shots”

auto stats = engine.get_stats(); // get the statistics at the end
 // of the series of shots

70

Real run on IBM Q processors with Qiskit

The GHZ state

Qiskit provides also a QASM simulator (QASM = A Quantum Programming Language)
www.quantum-inspire.com/kbase/qasm/

We should have only
states (000) and (111)
but in reality we see
with small probability
other states too.

71

Appendix

72

Appendix A

73

Appendix A

74

Appendix A

Note: we may have up to 23 = 8 minterms.

75

Appendix B

The no-cloning theorem

76

Appendix C

Obtaining the SWAP gate from CNOT gates

1 2 3

1 × 2:

(1 × 2) × 3:

77

Appendix C

if we start with this:

we have this at the end.

78

Appendix D

The Bell (EPR) basis

This circuit:

transforms the computational
 basis states into the Bell states:

79

Appendix E

Exercise qpp file

1 cls-CNOT
2 cls-NAND-Toffoli
3 qubit-1
4
5 pauli-1
6 qubit-meas
7 unitary-H-PS
8 qnt-CNOT
9 teleportation
10 qiskit-start

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79

