PERLE Cavity Design and Results and First Thoughts on HOM-Couplers

PERLE HOM Coupler Meeting Oct 11th 2019, CERN

Powerful energy recovery linac experiments

F. Marhauser

Monday, October 11, 2019

Office of Science

Ensemble of Cavities Fabricated at JLab

CRN1_2 - For bench measurements allowing to join multiple cells

CERN-JLab Collaboration:

 Prototype fabrication and vertical dewar tests of Nb cavities completed beginning of 2018
 Results reported

No funds and activities since then at JLab

Parameter Table for ERL 5-Cell Cavity

"Well Balanced" Design

	•	0	is Ez	On axi
A	~ /			1
	[]]	11		
	11	11		
	11	1 11		
	H	I = M		
	V	M		

Jefferson Lab

	Incea Desig	511
Parameter	Unit	Value
Frequency	MHz	801.58
Number of cells		5
Lactive	mm	917.9
Long. loss factor (2 mm rms bunch length)	V/pC	2.742
$R/Q = V_{\rm eff}^2/(\omega^*W)$	Ω	523.9
G	Ω	274.6
<i>R/Q·G</i> /cell	Ω2	28788
Eq. Diameter	mm	328.0
Iris Diameter	mm	130
Tube Diameter	mm	130
Eq./Iris ratio		2.52
Wall angle (mid-cell)	degree	0
E _{pk} /E _{acc} (mid-cell)		2.26
B _{pk} /E _{acc} (mid-cell)	mT/(MV/m)	4.20
<i>k</i> _{cc}	%	3.21
cutoff TE ₁₁	GHz	1.35
cutoff TM ₀₁	GHz	1.77

F. Marhauser, PERLE HOM Coupler Meeting, 2019-10-11

Final Vertical Test Result at 2K (Five-cell CRN5)

120, 12

°C, hrs.

Low-T bake-out

Final Vertical Test Result at 2K (Five-cell CRN5)

F. Marhauser, PERLE HOM Coupler Meeting, 2019-10-11

Jefferson Lab

Latest Vertical Test Results at 2K (1-cell *EIC1*)

- A single-cell Nb cavity (CRN1) was built and tested
- MP activities observed at ~10 MV/m, but quickly processed

Main post-processing steps

Post-Processing steps	Unit	CRN1	CRN5
Bulk BCP	μm	160	216
High-Temperature heat treatment	°C, hrs.	800, 3	800, 3
Final EP	μm	30	30
High Pressure Rinse (HPR) cycles		2	4
Low temperature bake-out	°C, hrs.	120, 12	120, 12

Summary of main results

RF results	Unit	CRN1	CRN5
E _{acc} at quench	MV/m	32.3	30.1
E _{pk} at quench	MV/m	61.3	68.1
B _{pk} at quench	mT	129.0	126.3
FE onset field	MV/m	~20	~25
FE-induced radiation (max.)	mR/hr.	2.3	0.06
Residual resistance	nΩ	3.19	n.m.
Max. Q _o -value	/1e10	4.97	4.72
Q ₀ -value at 25 MV/m	/1e10	2.62	3.12
Lorentz Force Detuning	Hz/(MV/m)²	-7.1	-1.5

simulated of MP barrier

Residual Resistance

- Material used is OTIC Ningxia high-RRR (250) fine grain Nb
- Residual resistance has been assessed during tests for CRN1

• How does residual resistance scale with frequency ?

Note: This takes into account 2.49 $n\Omega$ due to NC RF losses in SS blank flanges for the single-cell cavity

Surface Resistance

- Comparison of ~800 MHz cavities
- CRN5 versus typical (but recent) medium-beta (MB) proton cavity built for SNS

Weld Quality Matters

• RF test of 953 MHz of 1-cell (E/C1) cavity

Weld Quality Matters

• RF test of 953 MHz of 5-cell (EIC5) cavity

HOM Damping Studies

- Preliminary HOM studies carried out incorporating LHC-type HOM couplers (and coaxial input coupler) scaled to adapt to new cavity shape at 802 MHz
 - Broadband damping efficiency was found to be not optimal since also narrowband loop couplers are employed (as required for LHC cavities)
- Also considered using new coaxial HOM-couplers or scaled versions of existing designs (TESLA/JLab-type couplers) with up to 3 couplers combined in a single 'Y' end-group
 - Benefit of 'Y' end-group: Minimizes/eliminates dependency on transverse mode polarization
 - Monopole power deposition to each coupler quasi identical

HOM Damping Studies

- Alternative: Broadband waveguide HOM couplers such as developed at JLab in the past for Ampere-class ERLs
 - Waveguide couplers could be 'overkill' for PERLE since 3-pass peak beam current is comparably small (< 100 mA)
 - Benefit: Waveguides do not require fundamental mode notch filter and are broadband by nature
 - Yet, trapped TE₁₁₁ and TM₁₁₀ dipole modes with high impedances could be better captured with coaxial couplers (cf. Supercond. Sci. Technol. 30 (2017) 063002)

Beam Spectra vs. HOM Frequencies

• Cavity design took into account avoiding main 802 MHz beam spectral lines

Case 1: Every RF bucket would be filled (no gap)

 Cavity design also avoids HOMs hitting major beam current lines for PERLE recombination pattern (next slides)

PERLE Beam Spectrum

Case 2: PERLE baseline bunch spectrum for 801.58 cavities: Bucket spacing 801.58 MHz/20 = 40.079 MHz, $Q_b = 320$ pC

Bunch recombination pattern for PERLE. Bunches at different energies (the turn number is indicated) are separated by nearly constant bunch spacing.

6.0

F. Marhauser, PERLE HOM Coupler Meeting, 2019-10-11

HOM-couplers relocated 50 mm closer to cell

HOM power dissipation (monopoles)	w
Up to 6 GHz	23.0
Up to TM01 cutoff (1.765 GHz) (definitely trapped)	14.2
Up to TM01 cutoff (1.765 GHz) per coupler for symmetric Y-endgroup	4.71

Similar values as before since well missing major HOM resonances

F. Marhauser, PERLE HOM Coupler Meeting, 2019-10-11

Summary

- Preliminary HOM studies performed for 5-cell cavity only using existing, scaled HOM coupler designs (already beyond funded collaboration goals)
- No specific design optimization was carried out for HOM couplers
- Cavity design well avoids HOMs hitting PERLE beam spectral lines for given recombination pattern
- Anticipated HOM monopole mode power deposition below first beam tube cutoff (covering high impedance, trapped HOMs) is principally the same for all HOM coupler configurations studies, and about 30 W (Q_b = 320 nC) up to 6 GHz
 - Power scaled with I_{inj}^{2} , so at $Q_{b} = 2*320$ NC we have 120 W up to 6 GHz

- Thermal analyzes needed, i.e. active cooling of coupler needed or not ?

- PERLE project requires dedicated coupler design studies for given cavity
- HOM power beyond first cutoff depends on bunch σ , so far σ = 30 mm only
 - For nominal σ = 2 mm (!), 3D wakefield computations will consume much more CPU time \rightarrow need to evaluate total power up to ~80 GHz
- Any new HOM coupler version should consider 3D multipacting analyzes
 - -Just scaling from existing design can be dangerous due to potential MP (cf. SNS coupler)

ferson Lab

Summary (cont'd)

• 'Y' endgroup proposed using 3-couplers (waveguide or coax) to symmetrize fields and better equalize damping for transversely polarized HOMs

Average loaded Q of cavities up to TM020-like passband

Summary (cont'd)

Standard deviation of frequency spread as evaluated for each individual HOM in EZ cavities (blue diamonds) and RI cavities (green dots).

$$\delta A_{cell} \sim N^2/k_{cc}^* \delta f_{cell,error}$$

More HOM Studies

IOP Publishing Supercond. Sci. Technol. 30 (2017) 063002 (38pp) Superconductor Science and Technology https://dci.org/10.1058/1361-6668/aa6b8d

Topical Review

Next generation HOM-damping

Additional Slides

F. Marhauser, PERLE HOM Coupler Meeting, 2019-10-11

Cavity Design Rationale - When is a Cavity Shape Optimized ?

> 1000 half-cells at 802 MHz, iris ID fix for fair comparison (example ID= 115 mm)

Cavity Design Rationale - When is a Cavity Shape Optimized ?

> 1000 half-cells at 802 MHz, iris ID fix for fair comparison (example ID= 115 mm)

Dynamic RF losses dissipated in Helium bath

4.50

4.40

4.30

4.20

4.10

4.00

3.90

3.80

3.70

3.60

3.50

3.40

Cavity Design Studies

JLab version

- Final design selected with:
 iris ID = 130 mm = beam tube ID
 - Same design principle applied
 - This ID yields better mechanical stability
 - Considers HOM-damping need (strong cell-to-cell coupling factor of 3.2%)

CERN version 1

scaled from 704 MHz design (E. Jensen et al. LINAC 2014)

(R. Calaga, CERN-ACC-NOTE-2015)

Tube ID = 160 mm Iris ID = 160 mm

Parameter Table for ERL Cavity Candidates

Parameter	Unit	Value	Value	Value	
Cavity type		JLab	CERN Ver. 1 [*]	CERN Ver. 2 [*]	
Frequency	MHz	801.58			
Number of cells		5			
Lactive	mm	917.9	935	935	
Long. loss factor (2 mm rms bunch length)	V/pC	2.742	2.894	2.626	
$R/Q = V_{\rm eff}^2/(\omega^*W)$	Ω	523.9	430	393	
G	Ω	274.6	276	283	
<i>R/Q·G/</i> cell	Ω^2	28788	23736 -18	<mark>% 22244 -23</mark>	
Eq. Diameter	mm	328.0	350.2	350.2	
Iris Diameter	mm	130	150	160	
Tube Diameter	mm	130	150	160	
Eq./Iris ratio		2.52	2.19	2.19	
Wall angle (mid-cell)	degree	0	14.0	12.5	
E _{pk} /E _{acc} (mid-cell)		2.26	2.26	2.40	
B _{pk} /E _{acc} (mid-cell)	mT/(MV/m)	4.20	4.77	4.92 +1	
k _{cc}	%	3.21	4.47	5.75	
cutoff TE_{11}	GHz	1.35	1.17	1.10	
cutoff TM ₀₁	GHz	1.77	1.53	1.43	

Residual Resistance

- Material used is OTIC Ningxia high-RRR (250) fine grain Nb
- Residual resistance has been assessed during tests for CRN1 and EIC5

 $R_{res} = 3.19 \pm 0.79 n\Omega$

Note: This takes into account 2.49 $n\Omega$ due to NC RF losses in SS blank flanges for the single-cell cavity

 R_{res} = 3.16 ± 1.28 n Ω

Note: This takes into account 1.31 n Ω due to NC RF losses in SS blank flanges for the single-cell cavity

