

Probing light dark matter with pulsar observations

Diego Blas

based on DB, D. Lopez-Nacir, S. Sibiryakov 1612.06789 + 1910.08544 A. Caputo, L. Sberna, M. Frias, DB, P. Pani, L. Shao, W.Yan 1902.02695 A. Caputo, DB, J. Zavala 1709.03991

Pulsars are neutron stars with strong magnetic fields and a significant magnetosphere

Pulsars are neutron stars with strong magnetic fields and a significant magnetosphere

Pulsars are neutron stars with strong magnetic fields and a significant magnetosphere

Some properties $r \sim 10 \text{ km}$ $\mathcal{M} \sim \# \mathcal{M}_{\odot}$ $\rho_c > \text{ nuclear} \sim 10^{17} \text{ kg/cm}^3$ $B \sim 10^{14} G$

Pulsars are neutron stars with strong magnetic fields and a significant magnetosphere

Some properties $r \sim 10 \text{ km}$ $\mathcal{M} \sim \# \mathcal{M}_{\odot}$ $\rho_c > \text{ nuclear} \sim 10^{17} \text{ kg/cm}^3$ $B \sim 10^{14} G$

But there is more...

The extreme numbers of pulsarspulsars can spin very fast!Vela PulsarPSR B0329+54J1748-2446adPeriod 1.4 ms89 ms0.7 s8.5 s

pulsars can spin very fast!

Very precise clocks!

pulsars have radio beams along the magnetic axes (related to the physics of the magnetosphere)

a main observable is the ToA (time of arrival) at different ν

pulsars have radio beams along the magnetic axes (related to the physics of the magnetosphere)

a main observable is the ToA (time of arrival) at different ν

The beauty of the ToA signal

Pulsars in binaries

a precise clock falling in the potential

Pulsar timing for fundamental physiX

At emission

- Properties of NSs (dense matter, B, X)
- Dynamics of the system: binary (GR, X) and external (X, matter) interactions

Propagation

Propagation in the magnetosphere

$$X = \mathcal{L}(\phi, F^{\mu\nu}) = \phi \, \vec{E} \cdot \vec{B}$$

 Propagation of signal in the interstellar medium: ions, e, GWs, X

At detection

• Fundamental 'constants' (X)

Pulsar timing for fundamental physiX

- Properties of NSs (dense matter, B, X)
- Dynamics of the system: binary (GR, X) and external (X, matter) interactions

Propagation

- Propagation in the magnetosphere $X = \mathcal{L}(\phi, F^{\mu\nu}) = \phi \, \vec{E} \cdot \vec{B}$
- Propagation of signal in the interstellar medium: ions, e, GWs, X

At detection

Fundamental 'constants' (X)

X= (Ultra) light DM

DM in galaxies (e.g. MW)

DM in galaxies (e.g. MW)

fixed orbital parameters $a, e, \varpi, \Omega, \epsilon_1, \iota$

In a WIMP medium

dynamical friction in each object

 $m_i \ddot{\mathbf{r}}_i = \pm \frac{Gm_1m_2}{r^3} \mathbf{r} + \mathbf{F}_i^{\text{ext}}$

(drift of orbital parameters! method of osculating orbits)

e.g.
$$\dot{a} = 2\sqrt{\frac{r_0^3}{GM}} \mathbf{F}_i^{\text{ext}} \cdot \mathbf{e}_{\theta}$$

Chandrasekhar, 1940s, Binney & Tremaine, "Galactic Dynamics", 1987

$$\langle \dot{P}_b^{\rm DF} \rangle \approx -3 \times 10^{-14} \left(\frac{\lambda}{20}\right) \left(\frac{\mu}{M_{\odot}}\right) \left(\frac{\rho_{\rm DM}}{2 \times 10^3 \,{\rm GeV/cm}^3}\right) \left(\frac{\Gamma_b}{100 \,{\rm day}}\right) \left(\frac{150 \,{\rm Km/s}}{\sigma}\right)$$

Chandrasekhar, 1940s, Binney & Tremaine, "Galactic Dynamics", 1987

Dynamical friction:

$$\begin{aligned}
\sigma: \text{ DM dispersion} \\
x \equiv v/(\sqrt{2}\sigma) \ll 1 \\
\mathbf{F}_{i}^{\text{DF}} = -4\pi\rho_{\text{DM}}\lambda \frac{G^{2}m_{i}^{2}}{v_{i}^{3}} \left(\frac{4x^{3}}{3\sqrt{\pi}} - \frac{4x^{5}}{5\sqrt{\pi}} + O\left(x^{7}\right)\right)\mathbf{v}_{i} \\
\text{Pani 2015} \\
\langle \dot{P}_{b}^{\text{DF}} \rangle \approx -3 \times 10^{-14} \left(\frac{\lambda}{20}\right) \left(\frac{\mu}{M_{*}}\right) \left(\frac{\rho_{\text{DM}}}{2 \times 10^{3} \text{ GeV}/\text{cm}^{3}}\right) \left(\frac{P_{b}}{100 \text{ day}}\right) \left(\frac{150 \text{ km/s}}{\sigma}\right)^{3}
\end{aligned}$$

$$(16) / (100 \text{ day}) (20) (M_{\odot}) (2 \times 10^3 \text{ GeV/cm}^3) (100 \text{ day}) (\sigma)$$

 $\rho_\odot\sim 0.3~{\rm GeV/cm^3}$

Chandrasekhar, 1940s, Binney & Tremaine, "Galactic Dynamics", 1987

$$\sigma: \text{ DM dispersion}$$

$$x \equiv v/(\sqrt{2}\sigma) \ll 1$$

$$\mathbf{F}_{i}^{\text{DF}} = -4\pi\rho_{\text{DM}}\lambda \frac{G^{2}m_{i}^{2}}{v_{i}^{3}} \left(\frac{4x^{3}}{3\sqrt{\pi}} - \frac{4x^{5}}{5\sqrt{\pi}} + O\left(x^{7}\right)\right) \mathbf{v}_{i}$$
Pani 2015
$$\langle \dot{P}_{b}^{\text{DF}} \rangle \approx -3 \times 10^{-14} \left(\frac{\lambda}{20}\right) \left(\frac{\mu}{M_{\odot}}\right) \left(\frac{\rho_{\text{DM}}}{2 \times 10^{3} \text{ GeV/cm}^{3}}\right) \left(\frac{P_{b}}{100 \text{ day}}\right) \left(\frac{150 \text{ km/s}}{\sigma}\right)^{3}$$

$$\rho_{\odot} \sim 0.3 \ {\rm GeV/cm^3}$$

better prospects for other WIMP models Caputo, DB, Zavala 2017

(Randall et al 2014)

- * Double disk models have higher ρ and lower σ
- * Maybe SM-DM interacting through a light mediator?

Ultra light DM models

M candidate should be a cold gravitating medium

- Production mechanism and viable cosmology
- Motivation from fundamental physics
- Possibility of (direct or indirect) detection

ULDM behaves like CDM at large-scales

$$\mathcal{L} = \frac{1}{2} \left[\left(\partial_{\mu} \phi \right)^2 - m^2 \phi^2 \right] + \text{gravity}$$

Scale of ~30 Mpc, Schive et al. 1406.6586

CDM

Ultra light DM in our Galaxy

 $F_{\mu\nu}$

For ULDM, field has huge occupation numbers with random phases: it can be treated as a classical field

$$\mathcal{L} = \frac{1}{2} \begin{bmatrix} (\partial_{\mu}\phi)^2 - m^2\phi^2 \end{bmatrix} \longrightarrow \qquad \begin{array}{l} \phi_k \sim e^{i(\omega t - kx)} \\ \text{in a virialized halo} \end{array}$$

'Coherent' effects of ULDM in the MW

Virialized configuration: collection of waves with distribution determined by properties from the galaxy $\phi \propto \int_{0}^{v_{max}} \mathrm{d}^{3} v \, e^{-v^{2}/\sigma_{0}^{2}} e^{i\omega_{v}t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c.$ distribution: $\sigma_{0} \sim 10^{-3}c$ in the MW since $v \sim \sigma_0 \ll 1 \rightarrow \omega_v \approx m(1+v^2) \rightarrow \phi \propto \phi_0 \cos(mt+f)$ Centers et al 19 2.0 1.5 $\phi(t)/\Phi_{\rm DM}$ 1.0 0.5 0.0 -0.5-1.00 1 2 3 4 5 6 t/τ_c $\tau_{\rm c} \sim 65 \text{ years } \left(\frac{10^{-3}}{V_{\circ}}\right)^2 \left(\frac{10^{-18} \text{eV}}{\infty}\right)$

It is also very homogenous

the field is homogeneous at scales

$$\lambda_{\rm dB} \sim 1.3 \times 10^{12} {\rm km} \left(\frac{10^{-3}}{V_0}\right) \left(\frac{10^{-18} {\rm eV}}{m_{\Phi}}\right)$$

It is also very homogenous

the field is homogeneous at scales

$$\lambda_{\rm dB} \sim 1.3 \times 10^{12} {\rm km} \left(\frac{10^{-3}}{V_0}\right) \left(\frac{10^{-18} {\rm eV}}{m_{\Phi}}\right)$$

Effects on binary system: pure gravity

DB, LopezNacir, Sibiryakov 16, 19

$$\ddot{\vec{R}}_{CM} = 0$$

$$\mu \, \ddot{\vec{r}} = \vec{F}_{GR} + \vec{F}_{DM,halo} \propto \vec{r}$$

$$\delta E_b = \mu \int_0^{P_b} dt \, \dot{\vec{r}} \cdot \vec{F} \quad \Longrightarrow \quad \dot{P}_b \propto |E_b|^{-3/2} \, \dot{P}_b$$

Can also be found from the osculating method

$$\frac{\dot{a}}{a} = -\frac{2e}{\omega_b\sqrt{1-e^2}}\ddot{\psi}\frac{r}{a}\sin\theta$$

$$\dot{e} = -\frac{\sqrt{1-e^2}}{\omega_b}\ddot{\psi}\frac{r}{a}\sin\theta$$

$$\text{if} \quad m \approx N \frac{2\pi}{P_b}$$

the effect accumulates in every orbit (resonant effect)

Prospects of observation

DB, LopezNacir, Sibiryakov 16

This pure gravitational test of ULDM is beyond reach....

Effects on binary system: DM-matter interaction

DB, LopezNacir, Sibiryakov 16, 19

DM can couple directly to matter

 \vec{F}

$$m_i \alpha \int \phi(x_{pp}) \, \mathrm{d}s_i + m_i \beta \int \left[\phi(x_{pp})\right]^2 \, \mathrm{d}s_i \ \dots$$

again
$$m_i \ddot{\mathbf{r}}_i = \pm \frac{Gm_1m_2}{r^3} \mathbf{r} + \mathbf{F}_i^{\text{ext}}$$

 $\ddot{\vec{R}}_{CM} \neq 0$ (swamped by systematics) $\mu \ddot{\vec{r}} = \vec{F}_{\rm GR} + \vec{F}_{\rm DM,halo}(\phi(t))$

$$\delta L_b = \mu \int_0^{P_b} \mathrm{d}t \, \vec{r} \times \vec{F} \quad \rightarrow \quad L_b^2 \propto P_b^{2/3} \left(1 - e^2 \right) \quad \rightarrow \quad \dot{e}$$

Secular effects at JI903+0327 $P_b = 95 \text{ days}^P_{b} = 95 \text{ days}^P_{b} = 0.44$ Freire et al 2011 $\dot{P}_b = (-522 \pm 33) \times 10^{-12}$

DB, LopezNacir, Sibiryakov 16, 19

Secular effects at J1903+0327

$$m_i \alpha \int \phi(x_{pp}) \, \mathrm{d}s_i \stackrel{P_b}{=} m_i \beta 5 \int_{[\phi(x_{pp})]}^{hays} m_i \beta f_{[\phi(x_{pp})]}^{a} \mathrm{d}s_i$$
$$\dot{P}_b = (-52 \pm 33) \times 10^{-12}$$

Limits on quadratic coupling

Broadband limits

from J1713+0747 ($P_b = 67.8 \,\mathrm{days}$, $e = 7 \times 10^{-5}$) $\dot{e} \lesssim 10^{-17} \,\mathrm{s}^{-1}$

Propagation of EM waves in a DM medium

Caputo, Sberna, Frias, DB, Pani, Shao, Yan 19

The DM may be also coupled to photons

modify the dispersion relation of light

charged DM

 $q_{\rm DM} \int A_{\mu}(x_{pp}) \mathrm{d}x_{\rm DM}^{\mu}$

$$\phi = \phi_0 \cos(mt + \alpha(x))$$
$$\omega^2 = k^2 \pm 2\dot{\phi}(t) k$$

axions

 $g\,\phi\,F_{\mu\nu}\tilde{F}^{\mu\nu} = g\,\phi\,\vec{E}\cdot\vec{B}$

oscillating polarisation angle!

Constraints on DM charge

Constraints on axion-EM coupling

Caputo, Sberna, Frias, DB, Pani, Shao, Yan 1902.02695

using signals from pulsars

Conclusions

The signals from pulsars can test new physics at production, propagation, detection

WIMPS at the binary location modifies the orbits but hard to measure

ULDM has better chances: rich phenomenology coherent oscillations, large density gradients

- Pure gravity case out of reach
- Case of DM-Matter interaction generates best constraints for certain DM models

Future work

- Detailed analysis of specific systems
- Study the effects in populations (not instantaneously)
- DM substructure with large over-densities
- Other interactions (torques?)

Other effects related to propagation or at production

Future work

- Detailed analysis of specific systems
- Study the effects in populations (not instantaneously)
- DM substructure with large over-densities
- Other interactions (torques?)

- Other effects related to propagation or at production
- P. Freire: "Nature has always been good pulsar timing"

SKA, MeerKAT, FAST,...: new observations may bring new surprises!