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The extreme numbers of pulsars

Pulsars are neutron stars with strong magnetic fields 
and a significant magnetosphere

But there is more…

Some properties 
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The extreme numbers of pulsars

pulsars can spin very fast!

J1748-2446ad J2144-3933
PSR B0329+54Vela Pulsar

1.4 msPeriod 8.5 s0.7 s89 ms

speed at equator: 10�3 c

gravity at the equator: 1011 g

Pulsars are gigantic fly wheels! 

Very precise clocks!
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TOA! Residual!

Model!

Fold! Fold!

A&simple&and&clean&experiment:&Pulsar&Timing&

Coherent!3ming!solu3on!about!1,000,000!more!precise!than!Doppler!method!!

Pulsar!3ming!measures!arrival!3me!(TOA):!
!

!

5.757451924362137(2) ms (2 atto seconds uncertainty)Ps =

(for different frequencies and including polarization)

PSR J0437-4715 

The beauty of the ToA signal



Pulsars in binaries

radio pulsars⇠ 2500

10 % are in binaries 
(MSS, WD, NS, planets)! 

the ToA of the signal is sensitive to the orbit: 
a precise clock falling in the potential 

known double pulsar1

Pb = 94 min� 5 yr

2800



At emission

Propagation

• Properties of NSs (dense matter, B, X)
• Dynamics of the system: binary (GR, X) 

and external (X, matter) interactions

• Propagation in the magnetosphere

At detection
• Fundamental ‘constants’ (X)

• Propagation of signal in the interstellar 
medium: ions, e, GWs, X

X = L(�, Fµ⌫)= � ~E · ~B

Pulsar timing for fundamental physiX
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Propagation

• Properties of NSs (dense matter, B, X)
• Dynamics of the system: binary (GR, X) 

and external (X, matter) interactions

• Propagation in the magnetosphere

At detection
• Fundamental ‘constants’ (X)

• Propagation of signal in the interstellar 
medium: ions, e, GWs, X

X = L(�, Fµ⌫)= � ~E · ~B

X= (Ultra) light DM

Pulsar timing for fundamental physiX
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radiopulsars
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(drift of orbital parameters! method of osculating orbits)

Orbital motion in the presence of WIMPS

In a WIMP medium
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Orbital motion in the presence of WIMPS

⇢� ⇠ 0.3 GeV/cm3

Caputo, DB, Zavala 2017better prospects for other WIMP models
(Randall et al 2014)

* Double disk models have higher     and lower ⇢ �

* Maybe SM-DM interacting through a light mediator?

Chandrasekhar, 1940s, Binney & Tremaine, “Galactic Dynamics”, 1987
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Production mechanism and viable cosmology
Motivation from fundamental physics
Possibility of (direct or indirect) detection

DM candidate should be a cold gravitating medium

Ultra light DM models
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Scale of ~30 Mpc, Schive et al. 1406.6586

ULDM behaves like CDM at large-scales

ULDM
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Ultra light DM in our Galaxy
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For ULDM, field has huge occupation numbers with random phases:



Virialized configuration: collection of waves 
with distribution determined by properties from the galaxy
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the field is homogeneous at scales
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Effects on binary system: pure gravity

µ ~̈r = ~FGR + ~FDM,halo

DB, LopezNacir, Sibiryakov 16, 19
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binary orbital frequency, its e↵ect is resonantly amplified
and leads to a secular change in the orbital period that
can be searched for experimentally. We now proceed to
the quantitative discussion. We start with the case when
DM and ordinary matter interact only gravitationally.

ULDM interacting only through gravity - The
energy-momentum of a free massive oscillating field (1)
corresponds to the density and pressure [16],

⇢DM =
m

2
��

2
0

2
, pDM = �⇢DM cos(2m�t+2⌥) . (2)

The latter generates an oscillating perturbation of the
metric. To find this we use the Newtonian gauge,

ds
2 = �(1 + 2�)dt2 + (1� 2 )�ijdx

i
dx

j
, (3)

and write down the trace of the (ij) Einstein equations,

6 ̈ + 2�(��  ) = 24⇡GpDM .

Neglecting the spatial gradients and using (2) we obtain,

 ̈ = �4⇡G⇢DM cos(2m�t+ 2⌥) . (4)

This can be viewed as a standing scalar GW. Similarly
to the usual GW’s, it produces an extra relative accel-
eration between the bodies in a binary system. This is
conveniently written in the Fermi normal coordinates as-
sociated to the center of mass of the binary [41],

�r̈
i = ��Ri

0j0r
j = � ̈ r

i
, (5)

where r
i is the vector connecting the two bodies and

�R
i
0j0 is the contribution of GW into the corresponding

components of the Riemann tensor. In the last equality
we evaluated �R

i
0j0 in the conformal gauge (3) since it

is coordinate independent at the linearized level.
Next, we compute the change in the energy of a binary

system with masses M1,2 during one orbital period Pb

due to its interaction with ULDM,

�Eb = µ

Z Pb

0
ṙ
i
�r̈

i
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= 4⇡G⇢DMµ

Z Pb

0
ṙ(t)r(t) cos(2m�t+ 2⌥)dt ,

where r is the distance between the bodies and µ ⌘
M1M2
M1+M2

is the reduced mass of the system. The energy
exchange is most e�cient when the orbital period is close
to an integer multiple of the period of metric oscillations.
Given that Pb / |Eb|�3/2, the change in Keplerian energy
leads to a secular drift of the orbital period. Defining

�! = 2m� � 2⇡N/Pb , |�!| ⌧ 2m� , (6)

and using the standard formulas of Keplerian mechanics
we obtain the time derivative of the period averaged over
time intervals Pb ⌧ �t ⌧ 2⇡/�!,

hṖbi = �6G⇢DMP
2
b
JN (Ne)

N
f(t) (7)

' �1.6⇥ 10�17
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where

f(t) = sin
�
�! t+ 2m�t0 + 2⌥

�
,

JN (x) are Bessel functions, e is the orbital eccentricity,
and t0 is the time of the first periastron passage since
t = 0. In the second line of (7) we have normalized ⇢DM

to the local DM density ⇠ 0.3GeV/cm3 in the neighbor-
hood of the Solar System. We observe that, depending
on the relative phase between the orbital motion and the
ULDM oscillations, the sign of hṖbi can be positive (de-
crease of the binary system energy) or negative (increase
of the energy). Furthermore, the sign alternates in time
with the period 2⇡/�! which can be used to discriminate
this e↵ect from other contributions to the measured Ṗb,
such as e.g. those due to the acceleration of the binary
with respect to the Solar System.

The expression (7) implies that the e↵ect vanishes for
circular orbits (e = 0) and grows with the orbital ec-
centricity. Besides, it is stronger for systems with large
orbital periods. These points are illustrated in Fig. 1. We
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FIG. 1. Secular derivative of the orbital period given in
eq. (7) as a function of the dark matter mass. We have set
f(t) = �1 for the numerical estimate. Solid lines assume
resonances for N = 1 (m� = ⇡/Pb), while dashed ones are for
N = 2 (m� = 2⇡/Pb). The corresponding orbital periods are
shown on the two top axes. The pink (lower) lines correspond
to ⇢DM = 0.3GeV/cm3 and e = 0.01, the blue (middle) lines
are for the same ⇢DM but e = 0.9, while the grey (upper)
lines correspond to ⇢DM = 10GeV/cm3 and e = 0.9. The
olive band on the left marks the regions m� . 2.3⇥ 10�23eV
that can be probed by future pulsar timing arrays [16].

see that slow non-relativistic systems with orbital periods
of tens to hundreds of days and high eccentricity present
suitable targets to search for ULDM in the mass range
m� = 10�23 ÷ 10�21eV. At present there is a dozen of
known binary pulsars satisfying these requirements [45];
this number is expected to increase dramatically with the
operation of the Square Kilometer Array [46]. Note that
for such systems the strength of the resonance on higher
harmonics (N � 2) is comparable to the strength of the

Prospects of observation

This pure gravitational test of ULDM
 is beyond reach….

DB, LopezNacir, Sibiryakov 16



Effects on binary system: DM-matter interaction

µ ~̈r = ~FGR + ~FDM,halo

~̈RCM 6= 0

DB, LopezNacir, Sibiryakov 16, 19

again

DM can couple directly to matter 
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Direct coupling: Resonances
Example: system J1903+0327 (                     ,               )Pb = 95days e = 0.44

Ṗb = (�52± 33)� 10�12

Limits on linear coupling

Solar System 
bound

current

future for 

precision 

Ṗb

10�13

NB. Pulsars probe strong gravity regime
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Pb = 95 days , e = 0.44

Ṗb = (�52± 33)⇥ 10�12

Freire et al 2011

DB, LopezNacir, Sibiryakov 16, 19
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Direct coupling: Resonances
Example: system J1903+0327 (                     ,               )Pb = 95days e = 0.44

Ṗb = (�52± 33)� 10�12

Limits on quadratic coupling
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Direct coupling: Broad-band 
Example: system J1713+0747 (                         ,                      )Pb = 67.8 days e = 7� 10�5

ė � 10�17 s�1
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NB. Further limits can come from statistical analysis of binaries 
with low eccentricities 

Limits on quadratic coupling

Broadband limits

from J1713+0747



Propagation of EM waves in a DM medium

g �Fµ⌫ F̃
µ⌫ = g � ~E · ~B

The DM may be also coupled to photons
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 modify the dispersion relation of light
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the Supplement Material. In both cases we assume a
Navarro-Frenk-White profile for the DMa density, nor-
malized to a local value of ⇢dm ⇡ 0.3GeV/cm3. The first
dataset comprises N = 13 local pulsars with the small-
est values of DMobs/d and for which parallax measure-
ments of the distance d are available. We only choose
pulsars located away from the galactic plane. This is
to minimize the e↵ect of the evacuation of DMa from
the galactic plane for millicharged DMa. While early
studies argue that this e↵ect is relevant for ✏ & 5.4 ⇥
10�22

⇣
mmilli
eV

⌘
[16, 35], a recent study [36] suggests that

this bound may be too restrictive. We also consider a
second dataset of Ncluster = 13 pulsars located in globu-
lar clusters within 8 kpc from the galactic center and o↵
the disk, again with the smallest DMobs/d. Distances of
clusters can be determined by di↵erent methods [37] not
relying on the DM, and their uncertainty is usually of
a few percent. We therefore assign a conservative error
of 10% to the value of d for the pulsars in this second
dataset. Even if the e↵ect of the galactic magnetic field
on the density of millicharged DMa away from the galac-
tic disk is uncertain, we do not expect DMa to be evac-
uated at high galactic latitudes, and our analysis should
provide realistic constraints.

For each pulsar we compute DMi
astro ⇡ hneiidi, where

hneii is an average electron density along the line of
sight obtained using the YMW16 model [38], while di
is the pulsar distance obtained from parallax (for the
first dataset) or from the location of the globular cluster
(for the second dataset). In the former case, we assign
hneii a 20% error to take into account potential system-
atics in the electron density model. This is a conservative
approach given the uncertainties in [38]. We perform a
Monte-Carlo Markov chain analysis using the Python
ensemble sampler Emcee [39] to explore the posterior
distribution. For our datasets, 105 samples are accumu-
lated with 20 chains. The chains show good acceptance
rate and convergence. The results are similar for the two
datasets:

✏

mmilli
. 4⇥ 10�9

eV

s
0.3GeV/cm3

⇢milli
at 95% C.L. (13)

which we compare to other existing bounds in Fig. 1.
In particular these results are compatible with ✏ = 0.
For completeness, we also show a similar (weaker) bound
estimated from the dispersion of the fast radio burst
FRB121102 [40]. This line falls in the ballpark of the
estimate (11). A more comprehensive analysis for FRBs
will be presented elsewhere [10].

The mass range in Fig. 1 is limited on the left be-
cause the expression (4) is valid as long as the energy
of the photon is smaller than mmilli. For radio waves
from pulsars, mmilli & ! ⇠ GHz ⇠ 10�6 eV. Since
the bound is more stringent for small masses, these con-
straints could improve as 1/mmilli for sub-GHz pulsar

measurements in systems with properties similar to the
ones used in our analysis. Low-frequency measurements
are indeed possible, see e.g. Ref. [41], though we leave
a more systematic study of the sources for the future.
Figure 1 shows that our bounds are competitive for
masses below the Tremaine-Gunn bound on fermionic
DMa, mTG & keV [42]. Hence, they apply to scalar
charged DMa or to models with a fraction of millicharged
fermionic DMa (see Eq. (13) for the scaling of the bound
with ⇢milli).
Finally, the existence of milli-charge DMa also im-

pacts the cosmological 21-cm line and distortions of the
CMB [43–45]. It seems possible that these observations
also constrain the very light case considered here, though
previous studies focus on much heavier DMa candidates,
and it seems cautious not to extrapolate their conclusions
at much lower masses. Instead, it would be interesting
to extend these analyses to smaller masses in the future.
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FIG. 1. Constraint on millicharged DMa in the ✏ � mmilli

space from pulsar (solid red line) and FRB121102 (dashed red
line) DM at 95% confidence level. Solid blue line indicates
the bound from Red Giants [15]. We assume a homogeneous
DMa density ⇢dm = ⇢milli ⇡ 0.3GeV/cm3. The bound scales

as ⇢�1/2
milli for fractional components.

Polarization constraints on ALPs. We now con-
sider the case where the millicharged particles are absent,
j⌫milli = 0. As discussed before, the modification of the
TOA from the terms depending on g in Eq. (7) is negligi-
ble and we ignore it. Nevertheless, due to their pseudo-
scalar nature, ALPs also induce an oscillating variation
of light polarization [47, 51–56]. Parity-symmetry break-
ing leads to birefringence, i.e. di↵erent phase velocities
for left- and right-handed modes, which in turn induces
rotation of the linear polarization plane. At first approx-
imation, we assume the ALP-DMa background in the
Milky Way rest frame to be described by the field con-
figuration [57]

�(x, t) = �̃0(x)

Z
d3v e

� v2

�2
0 ei(!vt�ma~v·~x)+i'v +c.c., (14)
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using signals from pulsars

Constraints on axion-EM coupling



Conclusions

WIMPS at the binary location modifies the 
orbits but hard to measure

ULDM has better chances: rich phenomenology 
coherent oscillations, large density gradients 

The signals from pulsars can test new physics 
at production, propagation, detection

Pure gravity case out of reach

Case of DM-Matter interaction generates 
best constraints for certain DM models



Future work

Detailed analysis of specific systems

DM substructure with large over-densities 

Other effects related to propagation or at production 

Study the effects in populations (not instantaneously)

Other interactions (torques?)
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DM substructure with large over-densities 
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Study the effects in populations (not instantaneously)

Other interactions (torques?)

P. Freire:  “Nature has always been good pulsar timing”

SKA, MeerKAT, FAST,…: new observations may bring new surprises!


