Centre de Calcul de l'Institut National de Physique Nucléaire et de Physique des Particules

Monitoring jobs resource
usage in real-time

Bastien Gounon
January 27, 2020

&
%CINEF’B @

* Understand resource usage for LSST jobs running at CC-IN2P3
* CPU efficiency, peak memory usage, reads and writes, ...
* Grid Engine accounting ?
* unreliable I/0 counters...
* stats only available after job completion
* Need for a new, more flexible, lightweight profiling tool
* provide real-time information
* help with occasional stalled jobs: “what’s happening ?”
* help with post-mortem of failed jobs
* optimize resource allocation for each task

CCIN2P3

* Pseudo-filesystem available on all Linux systems (and some more)

* Kernel-level, reliable source of information about running processes

* Contains detailed information about resource usage
* /proc/[pid]/stat: process status, CPU time, allocated memory, ...

> 1s /proc
autogroup

cgroup

clear_refs

cmdline

/proc/[pid)/io: read / written bytes
/proc/[pid]/task/[tid]/children: list of children processes
and much more

/1203
comm
coredump_filter
cpuset

mountstats oom_score_adj schedstat
pagemap
personality

projid_map

loginuid

groups
smaps
smaps_rollup

stack

gid_map
io
latency
Timits

maps
mem
mountinfo
mounts

numa_maps
oom_ad]
DOm_score

enyiron

sched

timerslack_ns
uid_map
wchan

stat
statm
status

syscall

timers

CCINZ2P3

* /I\ Child process counters are not integrated into the parent’s until it exits

OO m
i
| | wn
: !/
=
&
47]
0| m
i
| wn

CCIN2P3

JoReMon: a metrics collection tool

JoReMon is written in Go, based on prometheus/procfs

Portable and standalone executable, very easy to deploy and run
Also available as a Go library for developers

Generates time-series of multiple metrics compiled from procfs
* CPU: time and current usage

* IO: bytes read and written on disk / in total

* Memory: RSS (RAM) and VMS (RAM + swap)

Configurable frequency

Outputs parsable JSON or CSV file

CCINZ2P3

JoReMon: how to use it ?

Usage of ./joremon:
-folder string
Output folder (ex: /tmp) (default ".")
-format string
Qutput format (csv / jsons) (default "jsons")
—-interval int
Time +interval between reports (default 5)
-job string
Job ID {will be reported in each row)
-mode string
Reporting mode (cpu / mem / jo / all) (default "all")
-out string
Output file name (ex: myfile)
-pid int
Process ID (default 1)

*» .fjoremon -format jsons -interval 5 -job 123456 -mode cpu -pid 12889 -out -
{"JobID":"123456" ,"Type" :"joremon.CPUInfo","PID" 12889, "CWD" : " /pbs /home/d/des
cprod/bin","CMD":"-bash","Hostname":"ccad@2" ,"User":"descprod","Timestamp":"2
B20-02-05TB2:11:55.797358503+01:00" ,"CPUTime" :0.85,"ClockTime" : 187 .4700000286
1823, "CPUPercent":0.052947940495972205, "PeakCPUPercent" :0.0852947940499722085}

{"JobID":"123456" ,"Type" :"joremon.CPUInfo","PID": 12889 ,"CWD" " /pbs/home/d/des
cprod/bin","CMD":"-bash" ,"Hostname" :"cca@@2" ,"User" :"descprod","Timestamp":"2
020-02-05T02:12:00.864879228+01:00","CPUTime" :0.85,"ClockTime":192.4700000286

1823, "CPUPercent":0.05156453298031232 ,"PeakCPUPercent":0.05294794045572205}

Output values are:

JobID : unique identifier

Type : joremon.IOInfo / joremon.CPUInfo / joremon.MemInfo
PID : which process s being watched

CWD : current working directory

CMD : which command is being run

Hostname : name of the machine on which JoReMon s running
User : who 1is running the process

Timestamp : date and time at which the measure was taken
CPUTime : cumulative CPU time used by the process
ClockTime : time since process start

CPUPercent : current CPU% usage

PeakCPUPercent : maximum CPU% measured

RBytesFromDisk : cumulative I/O0 read from disk, in bytes
WBytesFromDisk : cumulative I/0 written to disk, in bytes
RBytesTotal : total cumulative I/0 read, in bytes
WBytesTotal : total cumulative I/0 written, in bytes

RSS : current main memory usage (RAM)

PeakRSS : maximum main memory usage measured

WMS : current virtual memory usage

> ./joremon -format csv -interval 5 -job 123456 -mode cpu -pid 12885 -out -
CMD,CPUPercent,CPUTime,CWD,ClockTime ,Hostname, JobID,PID, PeakCPUPercent, Timesta
mp,Type,User

-bash,0.031522,1.0100008, /pbs/home/d/descprod/bin,374.470000,ccadd2,123456,1288
9.000000,0.031922,2020-02-05T02:15:02.841672957+01:08, joremon.CPUInfo,descprod
-bash,®.031497,1.010088, /pbs/home/d/descprod/bin,379.470000,ccad@?,123456,1288
9.000000,0.0315922,2020-02-05T02:15:07.917985941+01:08, joremon.CPUInfo,descprod

More information at https://gitlab.in2p3.fr/bastien.gounon/joremon

CCINZ2P3

JoReMon: how do we use it ?

* Hide parameters and binary behind a wrapper

* Very easy to integrate into existing workloads
* Call joremon.sh at the start of the job script

* Analog to the “sidecar” in container-based architectures

%= qsub pipeline_job.sh

pipeling_job.sh [«

joremon.sh joremon
pipelineTask.py & ---------

subTaskl.py
subTask2.py

v

%= |5 /sps/Isstioutput/folder

job.log
jobid.cpuinfo.csv
jobid.ioinfo.csv

jobid. meminfo.csv

CCIN2P3

Visualization and analysis

A collection of Jupyter notebooks to parse JoReMon data
Based on pandas and matplotlib

Available at https://qgitlab.in2p3.fr/bastien.gounon/plotemon

Evolution of each metric over time, for a single job (ex: run_calexp)

ooooooooo

CCINZ2P3

Visualization and analysis

1eld

* Compile metrics from many jobs to extract general tendencies

max memory usage

40

35

30

00

§ 20 \M‘\
15
10
05

— RSS
T WMS

=

5000

time (s)

10000 15000 20000 25000 30000 35000 40000

oooooo

uuuuuu

nnnnnn

uuuuuu

job duration repartition

rareT)

— pu_usage —— rchar
600 6 wchar
P R read_bytes
B00 4 — write_bytes
a 44
T i
§ a00 B3
21 /
200 1 1
0 07
T T T T T T T T T
2000 4000 6000 8000 CPUPercent 2000 4000 6000 8000
time (s) time (s)

average behavior for
typical runs

dataset of ~5000
run_calexp jobs

— R55
WMS
L T T T T
2000 4000 6000 8000

time {s)

ccineP3 BED

* JoReMon:
* Collect network usage
* Output data into a time-series database

* Visualization:

* Dynamic web UI or Grafana dashboard instead of notebooks
* More plots: we need your input !

CCINZ2P3

Conclusion and questions

JoReMon is a generic tool for resource usage collection on Linux
Can easily be integrated in any workload

Visualization tools are still in early version and are bound to improve
If you are interested, get in touch

Thank you!

CCIN2P3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

