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Context:

e There will be a lot of photometric candidates without
spectroscopic confirmation

We would like to use them for something

ML-based SN photometric classification has attracted a lot of
attention

ML-based strategies rely on good training sets

COIN (CRP #4 team) suggested an Active Learning Strategy
DESC is interested in cosmology

April/2019 an inter-collaboration agreement was signed
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1st RESSPECT meeting:
July 2019 - Clermont Ferrand, France

https://cosmostatistics-initiative.org/focus/resspectl/



https://cosmostatistics-initiative.org/focus/resspect1/

Goal:

Build a recommendation
system that optimize
photometric supernova
cosmology results



Current work structure:

Number of researchers subscribed to the project: 29
(14 DESC, 10 COIN, 5 both)

Minutes document in confluence
From July-December 2019: 1 face-to-face meeting and
3 telecons

e Projectdesign: Bruno Quint, Alex Malz

e Simulations: David Jones, Mi Dai, Anais Moller, Maria Vincenzi

e (lassifiers: Sreevarsha Sreejith, Noble Kennamer, Anais Moller,
Bruno Quint

e Active Learning Strategy: Noble Kennamer

e Spectroscopic requirements: Santiago Gonzalez-Gaitan, Anais
Moller, Lluis Galbany, Alberto Krone-Martins, Kara Ponder

e (Cosmology based metric: Kara Ponder

e Full cosmology pipeline: Rafael S. de Souza, David Jones, Mi Dai
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Cosmological Feedback

Train

—>

Classified Data

Photometric
Training Set Light
Curves

> p(class) \

!

-)Target Set( Queryable /)

AL strategy

For first N objects in v1, repeat with labels = la and non-la...

Temporary Training Set

Train ( Original Training ) ( 1 cand. - Label X )

—

| Classifier

Cosmology

Impact on \

y

List of queries v1 )

v

v

Telescope
resources

Object (s)
properties

cosmology

Machine Learning ‘ External factor

Active Learning

Cosmological Feedback

/ Queried Objects ){
&

Legend

Q Datasets

Process

Follow-up
decision

Products

| Models




by David Jobes (UCSC)

Simulations: Mi Dai (Rutgers U.)

and Maria Vincenzi (U. Portsmouth)

Stage 0: Perfect observation conditions and 1-day cadence.

Stage 1: Realistic observation conditions and 1-day cadence.

Stage 2: Realistic observation conditions and uniform cadence (3, 5, 10 days).

Stage 3: Realistic observation conditions and a couple of proposed LSST cadences.

Table 1: Summary of the status of simulations.

Simulation Models .Spe(:/ ; Status
Train selection
Stdge 0 PLASTIC(E IlLLI.»', Ibe (Alr()SrFIT)' i-band mag<, 24 Done
Stace 1 Ia, 91bg, IIn and II (NMF), ILOT, CART = ; oas
B Vincenzi et al| (2019): Ibc and II P,LA'STICC in validation
Stage 2 SelecFunc
Stage 3 TBD TBD Not started




Simulations:
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Simulations - Stage 0:
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Train

by Bruno Quint (Gemini) and
Alex Malz (GCCL - Germany)
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Classifiers on Stage 0 simulations:

Tree base algorithms: by Sreevarsha Srecjih
Random Forest
Gradient boosting

Extremely randomized trees
Deep Forest (Zhou and Feng, 2017))

Nearest Neighbors
Support Vector Machines
Multi-layer Precepton
Naive Bayes.

We confirmed previous results that tree-based
methods produced better results



1 classifier better than decision tree-based

algorithms
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Figure 8: Results from using a MC-Dropout strategy in the context of active learning. This study was inde-

pendently developed by the UCI group. Figure by Noble Kennamer.
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Classifiers on Stage 0 simulations:

Bazin fits
Random Forest
Uncertainty sampling

Training sample: 9 000 objects
Test sample: 74 000 objects

Strategy:
Passive Learning = AL - Uncertainty Sampling
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Classifiers on Stage 0 simulations:

Bazin fits
Random Forest
Uncertainty sampling

Training sample: 10 objects
Test sample: 81 000 objects

Strategy:
Passive Learning — = AL - Uncertainty Sampling
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Train

by Bruno Quint (Gemini) and
Alex Malz (GCCL - Germany)
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Spectroscopic requirements

e Position in the sky (object [RA, DEC] in comparison with field of view of chosen
telescopes, moon);

e Noisy oracles (probability that spectral classification can be wrong — maybe
based on SNR);

e Missed opportunity (situations where spectra was requested but observation
was not good enough to result in a reliable classification);

e Time since maximum brightness (this will require a classification probability
and consequent estimation of the time of maximum brightness);



by Santiago Gonzalez Gaitan

Spectroscopic requirements (U. Lisbon)

Table 2: Limiting epochs when spectroscopic observation is expected to be able to produce a classification.
This is just an extract. Complete table contains information for other redshifts and can be found at https:
//bit.1y/36SbWLD. Table by Santiago Gonzalez Gaitan.

z = (.01
Follow-up - 8Sm” Follow-up - 4m*
Type Pre-max (days) | Post-max (days) | Pre-max (days) | Post-max (days)

SNla -18 80 -18 80
SNIa-91bg -11 70 -11 nsi
SNlax -14 80 -14 80
SNIa-supCh -20 120 -20 120
SN-1IP -7 150 -7 150
SN-IIL -7 120 -7 120
SN-IIn -30 100 -30 100
SN-IIb -12 80 -12 80
SNIbe -20 80 -20 80
SLSN-I -35 220 -35 220
SLSN-II -60 450 -60 450

* Assumes limiting i-band mag of 24, texp = 7200s for S/N ~ 10 per 10A.
* Assumes limiting i-band mag of 21.5, fey, = 2000s for S/N ~ 10 per 20 A
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by Kara Ponder (UC Berkeley)

Cosmology based metric

We need a fast way to compare the the impact on
cosmological results based on different data sets.

Our first try is a fisher matrix-based comparison.
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Figure 9: Example of the output from the metrics pipeline when applied to 2 idealized data sets. Left: Contours
derived from data 2 data sets with the same number of points (500 each) and different error levels. Data set 1
(red) considered 10% of the errors from Stage 1 simulations and data set 2 (blue) considered full erros in the
same simulation. Right: Diagnostic output using the approximation presented by Hees et al. (2019).



Cosmology pipeline

by Rafael S. de Souza (UNC and SHAO)

The fast metric test needs to be confirmed by a full

cosmological fit.

A cosmology fit code was developed to serve as a

baseline test for the metric
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Figure 11: Joint posterior for w and €2, for 500 (left panel), and 10,000 (right panel) simulated SNe. We use
fitted SALT2 parameter values and considered measurement errors only in mpg.



Second live meeting planned for March, 2020

Deep thanks to all the RESSPECT team!!l!

https.//cosmostatistics-initiative.orq/focus/resspect?2/



https://cosmostatistics-initiative.org/focus/resspect2/

Extra slides
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AL for SN classification
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SN are transients

Samples: A Target Query
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Simulations:

SN ILOT at z = 0.65
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