The SN Hubble diagram

N. Regnault, and M. Betoule, P. Gris, M. Rigault, R. Graziani, P. Antilogus, P. Astier, S. Bongard, Y. Copin, H. M. Courtois, M. Briday, J. Cohen-Tanugi, D. Fouchez, E. Gangler, P. Gris, D. Hardin, A. J. Hawken, Y-L Kim, P-F Leget, L. Le Guillou, A. Moller, J. Neveu, E. Nuss, P. Rosnay, and many others

©ESO 2019

Constraints on the Dark Energy equation of state with Type Ia Supernovae

From JLA to the LSST era

N. Regnault¹, M. Betoule¹, M. Rigault², Ph. Gris², A. Möller², P. Astier¹, P. Antilogus¹, S. Bongard¹, J. Cohen-Tanugi⁶, D. Fouchez⁵, E. Gangler², R. Graziani², D. Hardin^{1, 4}, Y.-L. Kim³, P.-F. Léget¹, L. Le Guillou¹, M. Briday³, Ph. Rosnet², and J. Neveu⁷

322004 32 0000						
¹ Laboratoi 4 place Ju e-mail: ni ² Universite	Astronomy & Astrophysics manuscript no. aanda October 29, 2019	©ESO 2019				
 ³ Universite ⁴ Sorbonne ⁵ Aix Marse ⁶ Laboratoi France. ⁷ Laboratoi Received Se 	Peculiar velocity cosmology with type la supernovae					
	 R. Graziani¹, M. Rigault¹, N. Regnault², Ph. Gris¹, A. Möller¹, P. Antilogus², P. Astier², M. Betoule², S. Bongard², M. Briday³, J. Cohen-Tanugi⁴, Y. Copin³, H. M. Courtois³, D. Fouchez⁵, E. Gangler¹, D. Guinet³, A. J. Hawken⁵, YL. Kim³, PF. Léget², J. Neveu⁶, Ph. Rosnet¹ E. Nuss⁴ 					
	 ¹ Université Clermont Auvergne, CNRS/IN2P3, Laboratoire de Physique de Clermont, F-63000 Clermont romain.graziani@clermont.in2p3.fr ² Laboratoire de Physique Nucléaire et des Hautes Energies, Université Pierre et Marie Curie, presité Pari 4 place Jussieu, F-75005 Paris, France; Sorbonne Universités, UPMC Univ Paris 06, UMR 75, Université de Lyon, Univ. Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, F-69622, Villeurbace ⁴ Université de Montpellier, CNRS/IN2P3, Laboratoire Universi et Particules de Montpen. ⁵ Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France. ⁶ Laboratoire de l'Accélérateur Linéaire, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Sach 	-Ferrand, France, mail: is cot, C N2P3. Lensing magnification (see talk by PF Leget)				
Prospective IN	I2P3 2019-2020					

Under-constrained regions

- O(1000) SNe up to z < 0.1
- 4-day cadence (g,r) + 6 day cadence (i-band, private)
- 10% of sample with a higher cadence (1 day ?)

Subaru Strategic Program

• Télescope Subaru (8.2-m)

SN Hubble diagram ?

- Type Ia supernovae are a
 - statistically efficient
 - *mature*
 - probe of the expansion history
- With ground based observations only, can cover: 0.05 < z < 1
- With additional IR observations, can cover: 1 < z < 1.5
- Can we build a strategy, to get a LSST SN Hubble diagram
 - in 2 years of observations (2023, 2024)
 - with a constraining power (w_0, w_a) equivalent to that of DESI ?

How can we go beyond z \sim 1 ?

 Currently being explored with the combination of Subaru/HSC and HST
 Ground base observations alone can measure distances

up to z<1.1

 Beyond that, we need IR photometry (e.g. HST observations)

Poor man's version of (Astier et al, 2014) But seems to work pretty well !

9

This is a precision measurement ...

This is a precision measurement...

This is a precision measurement...

Ingredients for competitive cosmological constraints

- O(10⁴) well sampled SNe in the WFD
 - (easy, most cadences can deliver that)
- O(10⁴) well sampled SNe in the DDF

Depends on mirror coatings

- Can get O(3000) SNe in 2 years on 2 DDF pointings
- Need a deeper cadence than baseline (7% obs time)
- IR from space to extend the redshift lever arm up to z ~ 1.5
- A plan to get ~ 10^4 host galaxy redshifts up to z ~ 1.5
 - The only spectrograph that can do that is PFS
 - -> focus on equatorial DDF's
- A calibration at the 0.1% level
 - StarDICE, SCALA et al + control of DM photometry @ 0.1%

Al versus Ag mirror coatings

What can we get by ~ 2025 ?

• Easy to get O(10⁴) nearby SNe

- Most WFD cadences are now able to deliver that
- \circ ~ 1000 deg² during 2 years
- $\circ~$ 30-s exposures and a 4-day cadence give us enough SNR up to z $\sim~0.3$
- Regarding the DDF's, we need
 - a deeper cadence w.r.t. baseline
 - to focus on 2 fields during 2 years
 - e.g. 4 day cadence, with

	g	r	i	z	У	
deep	2 x 30	20 x 30	80 x 30	80 x 30	?	1.5 hr
baseline	2 x 30	4 x 30	8 x 30	25 x 30	4 x 30	0.3 hr

7% of observing time during 2 years

First 2 years of LSST + Some IR from space

(Euclid or HST)

(w,wa) constraints as of today

- 17

With two years of LSST + IR from space

FoM ~ 150

With calibration at the 0.1% level

FoM ~ 450

Timeline

Conclusion

- LSST has the potential to produce the best constraints on a varying DE equation of state by 2025
- Are we ready to
 - Define projects that are
 - shorter than the duration of the full project
 - designed to get early science
 - Request a deeper, *more expensive* cadence on at least two *equatorial* DDF's for the first 2 years ? (and relax these constraints in the following years)
 - Support a large HST proposal to complement the follow-up of the most distant SNe.

(Mirror coating has

an impact here)

Timeline

ZTF dataset

ZTF dataset

Subaru/HSC dataset : great light curves

Subaru / HSC dataset

- Two seasons on disk
 - COSMOS (2017)
 - XMM (2019-2020)
- O(100) redshifts
- Effort to get the remaining redshifts from:
 - AAT (4-m)
 - 8-m telescopes (VLT, Subaru, Keck)
 - PFS (2021)
- Will rely on photometric identification

A look at the JLA+ZTF+HSC/HST SN sample

A look at the JLA+ZTF+HSC/HST SN sample

Expected constraints before LSST first light

Uncertainty on μ (highz) - μ (lowz)

FoM ~ 50

Ingredients -> combined Hubble diagram

• Understand the instruments / sensors

- Instrument linearity
- Brighter-fatter & other sensor effects
- SN photometry
 - SNLS scene modeling code
 - Other codes (DM stack ?)
 - New developments (PSF, sky subtraction, ...)
- Calibration
 - Primary flux references : starDICE
 - Filter metrology : CBP / traveling CBP)
 - Inter calibrate Subaru/HSC <-> ZTF <-> JLA/SNLS5
- SN empirical model
 - Sugar / SALT+ /
- SN photometric identification
 - ZTF : great training sample
 - Subaru / HSC : relies on SN photometric identification

Conclusion

- 2 years of ZTF data is public
- 2+ years of HSC data is public
- Lots of expertise in this room
 - Unique opportunity to confront real data
 - To write method papers