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Methods for Photo-z

Since the pioneering work in the 60’, several methods have
been developed to estimate the redshift from the multi-bands
photometric measurements, basically:

® template-titting
e ® Uses the SED and a method of fit

® since Loh & Spillar 1986 ~30 galaxies in cluster 0024+1654,...,
Beck et al 2016...

® for LSST eg. Gorecki et al 2014 and Ansari et al 2019
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® feature based Machine Learning

® Uses a certain number of predefined features extracted from the
measurements and feed to an engine as k-NN, NN/MLP, Decision
Tree, BDT or Random Forest

® FEg. Csabai et al. 2007 (k-NN) used by Beck et al 2016, Gorecki et al
2014 (NN) ,Ansari et al 2019 (BDT)...

3 ® image based Deep Learning

Nb. Absolutely non exhaustive list of contributions.

Possible combinaison




DI.: what is promised?
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' Pasquet J., Bertin E., Treyer M., Arnouts S.,
Cascade of Convolutional layers Fouchez D, 2019, A&A, 621, A26
arXiv:1806.06607v2

1)  Variation: D’Isanto & Polsterer (2018) with a Gaussian Mixture Model as output
2)  CNN architecture is used in other context: eg. g-g lens finding algo (Lanusse et al 2018), deblending (Burke et al 2019),
objects classification (Gonzales et al 2018),...

... Non exhaustive list !



« Inception » tor photo-z

J. Pasquet et al. (2019)

Inspired from GoogleLeNet with multi-levels of conv-layers (Szegedy et al. 2014)

27.5M parameters Convolution (6.5% param.) FC (93.5% param.)
~30Layers ) : 6 : )

180 bins in z




Results trom Inception
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62= (tho[ - ZSpec)/(l + Zspec)

Iref

Training/Test samples :100k/100k
from a total of ~ 600k input dataset

I have refactored the original code in PyTorch latest
1.3.1 version and run @ CCIn2P3 GPU farm (mostly
on V100)

o the bias defined as the mean of the 4z distribution;
o the onap = 1.4826 x |62 — Median(é6z)];
« and the fraction 7 of outliers such that |§z| > 0.05.

bias (x10™%)  opaa (X107 5 (%)

0.3 11 1

Results totally in agreement with
J. Pasquet et al. (2019)




Some syst. studies

These are a very short summary of the J. Pasquet et al. thorough study.

Galactic reddening (extra features a strong reddening-dependent bias is

added at the level of the FC part) observed If the information is not
provided

Galaxy inclination the CNN is very robust: large

sample & data augmentation

Neighboring galaxies The CNN learn how to improve
redshift with neightboors at z>0.1

Variations throughout the surveyed area Deviations in the SZ and Strip 82 of
the SDSS dataset

PSF induce a small but measurable amount
of systematics on the estimated

redshifts. Info can be added at the FC
input (not done).



So far so good!

Teams have spend some times to:

e Elaborate ML./DL. architectures

* Apply some ML paradigm to tune the hyper-parameters
using for instance: the triptych Training/Testing/ Validation
sets, Under/Over fitting aspects

* Compare their results against “State-of-the-art”
competitors

* Perform systematics studies on the Input Data: eg, are they
representative of the use-case, what about their quality...

But, haven’t we torgotten
something ?



WARNING: The following slides
contain images that may be disturbing to
some readers.
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Adversarial samples: brief history

® After “AlexNet” the winner of ImageNet competition 2012

® ‘Topic rising since Szegedy et al. (2013): “Intriguing properties
of neural networks”

® 15 explanation Goodfellow et al. (2014) : “Explaining and

Harnessing Adversarial Examples” £ 15001
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® Part of the NIPS 17 Competition
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® Kurakin et al @ ICRL 17: “Adversarial Machine Learning at

Adversarial Example Pape

Cumulative Numbe

Scale” 250
0.
® Jlyas et al (2019): “Adversarial Examples Are Not Bugs, O @0 0 P 0
ey Are Features” tear

® Madry et al (2017-19) @ ICLR 18: “Towards Deep Learning
Models Resistant to Adversarial Attacks”

® ... Towards a deeper understanding of what is going on
and how to overtake this intrinsic problem.

NSIP: Neural Information Processing Systems
ICLR: International Conference on Learning Representations




Empirical risk/adversarial sample

{xi,2i }i<w € Dirain Eg. x;: images, z;: spectro-z

Classical Empirical risk

1
f* = argmin Z ((fo(x), 2)

0 | train | (

175$Z)NDtrain

Adversarial ﬁé* — max ¢ (fg(x + 5), Z)

perturbation 16| <e

1) Min-max/saddle point problem: no general solution in non-convex problem
2) Which norm | |.| |, which value of € ?



One-step perturbation

19]|<e

0" (x) = argmax {(fo(x + 9), 2)

fo "linear” + [[d||oc < e =

Goodfellow et al. 2014

¢ =107

(no effect with random noise)

Fast Sign Gradient Method

0 (x) = € x sign (Vsl(fo(x +9),2))




Multi-steps perturbations

(5*(”13) = argiax g(fe(f + 5)~, Z) d < 0 + argmax
16]|] <e lul[<a
10]loc < &

Projected Gradient Descend

Non-linear case
[uT.vge( folz +9), z)]

Kurakin et al 2016

2))]

One can also use GAN
Jang et al. 2019

d 7;;” 0+ cg sign(Vsl( fo(x +9),

Ensemble Adv. Training

clip learning rate Tramer et al. 2018

Models (images) bias (x10™%)  omaq (x1073) 1 (%
Iref (non perturbed) 0.3 /11\ /1\

Different Inception e =102, Single FSG

networks and CNN ; Tef[ ; . - 66 42

architectures trained 0-I3 (Iref adv) ; 63, 68] [40 43]

: CNN (Iref adv) — 76

independently and

tested with the same e=10"2, PGD, a = 1073, nyter = 10

adversarial samples. Iref — 82
10-13 (Iref adv) — 76,7 5




What to do?

® What’s the problem?
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What to do?

KNFowsst Dés Dmlers Nucte‘Al%S "'

® What’s the problem? | 1o NuG.enls |
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MeMe Les JUTRUCHES |

® Bury one's head in the sand...




What to do?

What’s the problem ?
Bury one's head in the sand...

« These kind of perturbations will never append ! »: are you
sure ?

Take it seriously as a sign of a certain (intrinsic) weakness:
® Training ?

® Architecture ?

® Both?



Countermeasures ?
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1)

2)

Countermeasures ?

What about the training?

1 .
Oii1 =0 — o Z Vs [max U folz + 0), 2)
|Btram| (2.2 18]| <= 6=8,
.-r-‘-,l'\"Bh'fun "
 J . L 4
Solution not known in Vo 0 fo 5 J. Danskin 1966
the general case. o L(folz +07),2) Convex case
Mix up normal images & adversarial ones Finlay et al. 2018;

acts as regularisation terms. Bietti et al. 2018



Adversarial training/results

Mix up Normal/Adw.

10:
11:

12:

Choose adversarial samples fraction and the attack gen-
erator (FSGM/PGD, ¢, a, number of iterations)

Do 6 (model weights) initialisation
for all mini-batch Birqin do

g+« 0

> loss gradient w.r.t 0

for all (z,2) € Birain do

if x counts for an adversarial sample then, according

to initial generator choice, find 6:
0" < e sign (Vsl(fo(z +9), 2))]

§ < P[0 + a sign(Vsl(fo(x + 9), 2))]

else
0"+ 0

g+ g+ Vel(fo(x+57),2)

0+ 60—

o—I
|Bt7‘ain|

> Update model weights

> Update loss gradient

> (FSGM)
> (PGD)

There exist several
alternatives & improvements

L

After adv-training (ESGM): results on “un-perturbed / perturbed” images

fraction of adv.  bias (x10™%) 0.4 (X1073) 1 (%)
0% ~0.3/-105  11/66 1/42
5% —20/—40 11/9 1/4
10% 40/—25 11/8 1/2
20% —6/23 11/8 1/1

Iref (non perturbed)

0.3

11

We retrieve the un-
perturbed classical
result.



Summary/outlooks

® The classical training/testing/validation triptych is not enough to guarantee the
generalisation power of a network. Notice that the problem in more general

than CNN (ie. DT, Gradient Boosted DT, R may also be affected as described in
reference (Chen et al. 2019)).

® Some countermeasures have been elaborated but still it is a very active research
domain as no satisfactory solution exists yet

® T've shown that mix up normal images with FSGM perturbed images gives some
good results for Inception robustness

® But this is not the end of the story: Inception is not immune against more
aggressive perturbations (eg. PGD) even if one uses above method and increases the
capacity of the network

® So, what next?

® compare with other architectures: eg. throw loss surface sensitivity against input
modifications (Yu et al. 2018)..

® Change the training method : eg. Lipschitz regularisation (Finlay et al. 2018), Kernel
perspective for regularization (Bietti est al 2019)...

I've submitted a paper to MNRAS “Adversarial training applied to Convolutional
Neural Network for photometric redshift predictions”. Stay tuned.
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French joke



Back-up







If we train the Inception model against FSGM perturbation, it has no power
against PGD perturbations.

If we increase the #features at the input of the classifier part of Inception
with fa= 50% we gain in robustness but wo recovering the classical training
with no perturbed images.

Model bias (x10~%) Omad (X1073) n (%)
Iref 0.3/—/- 11/66/82 1/42/59
I(modified) —21/ — 32/ — 32 15/24/25 2/6/6

Test inputs: Non-perturbed/FSGM/PGD



Loss in Parameter space

No real difference between Robust training or not

R P
o7

(a) Loss Surface of Natural Model (b) Loss Surface of Robust Model
Loss in Input space
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Why random noise is ok while
adv-pertubation 1s etficient ?
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(a) Random Direction (b) Cross Entropy Loss

Fuxun Yu et al. 2019



Weak models may fail to learn non-trivial classifiers. In the case of small capacity networks,
attempting to train against a strong adversary (PGD) prevents the network from learning anything
meaningful. The network converges to always predicting a fixed class, even though it could
converge to an accurate classifier through standard training. The small capacity of the network

forces the training procedure to sacrifice performance on natural examples in order to provide any
kind of robustness against adversarial inputs.

The value of the saddle point problem decreases as we increase the capacity. Fixing an adver-

sary model, and training against it, the value of (2.1I) drops as capacity increases, indicating the the
model can fit the adversarial examples increasingly well.

Madry et al



Inception trained with PGD 1., €=10 and attack similar
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Zphot

Simpler CNN

CNN

on 0l

Zphot




100X E orig.

adv.

i ref.
% 0.25 W —— pert.
0.00 AJ AL .
0.0 0.1 0.2 0.3 0.4 0.5




