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MENU :

Fink Broker and “Active” Machine Learning (ML) for
SuperNova (SN) classification

ML on simulated data
Applying models to the observations

Open issues/future directions
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Today known a few thousands type la SN (up to 2015 http://
www.cbat.eps.harvard.edu/lists/Supernovae.html : 3000 type la SN out of 6500 SN)

LSST Telescope data : approx./5Tb per night


http://www.cbat.eps.harvard.edu/lists/Supernovae.html
http://www.cbat.eps.harvard.edu/lists/Supernovae.html

Intro : from raw images to photometric data

|. Data from telescope
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2. Compare to existing database
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3. Do these images contain hew information!?
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Intro : from raw images to photometric data

|. Data from telescope

2. Compare to existing database

3. Do these images contain hew information!?

If yes it will be
processed

Difference magnitude
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Intro : focus on photometric data
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Question :

predictions by looking at few first data points !

Goal :

discovery of type la SN (fundamental for cosmology)

can one make
automated

early




Machine Learning :

a generalisation of regression (data fit)

a A

The fitted slope
G Will be used to make
predictions
concerning
unseen data sets
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Machine Learning : Prediction

Question:
will the new data be
consistent with this
prediction !

> X

i
i
0
i
i
i
r<
i

v
A
v

Training set Test set
(or in sample) (or out of sample)



Machine Learning : Prediction

.. Or inconsistent?
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Machine Learning for supernovae (SN) classification :

Different
filters ' [ A fit with Bazin’s function f(t)
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Ishida et al., MNRAS 2019
a nonlinear mapping
A, B, to, s, Ty = 0 (SN Ia), I
| (all the others)



Recipe:
Random forest

No

N estimators 1000

Single Decision Tree
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i. a series of trees

ii.Each tree enquires on the features
getting down

to the known label = 0 or |

averaging over many trees
=> probability

llllll



Recipe: “Active learning”

“Active learning 1s a branch of machine learning that deals with problems where
unlabeled data 1s abundant yet obtaining labels 1s expensive (computationally or
otherwise). The learning algorithm has the possibility of querying a limited
number of samples to obtain the corresponding labels, subsequently used for
supervised learning”

Cui et al,, arXiv:1912.03927


https://arxiv.org/abs/1912.03927

Active learning:

A Most uncertain classification
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|. Remove one of these
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active learning step,
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Some theoretical results :

| . Assuming the objects are only supernovae (type la SN or
others SN)

2. Data are from different surveys :
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DES vs. ZTF (higher levels of noise + only “r” and “g" filter)
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Ishida et al., MNRAS 2019 courtesy of Daniel Muthukrishna

Why theoretical results ?
Advantage is that labels are known beforehand also in the test
set => can compute metrics quantify performance



Metrics with full l.c. : efficiency
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Kernel Density Estimation

Test observing real ZTF data
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Different set of features:
“moments” of the photometric curves (for DES)
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Summary and future directions

* We have integrated into the broker the work of Ishida et al., MNRAS 2019

/A

. We compared DES and ZTF simulations (higher levels of noise)

. Mostly looked at Bazin features

Scratched the surface so far - more challenges lie ahead :

|. Other systems of features, besides moments, perhaps also consider the error-bars
2. Which classifier works better ?
3. In real data the test set has a few points (at least 5 are needed with Bazin) which

algorithm accounts for this in a optimal way!?



