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FINK  How did we get here?

e Jan/2019: First conversations about Spark and alert streams @ Clermont

e Feb/2019: DESC Broker workshop in Berkeley, USA

e May/2019: Fink is born: letter of intent (Lol) was submitted with 31 signatures
e Jun/2019: Broker workshop in Seattle with those who submitted Lol

e Aug/2019: All Lols are accepted, full proposal due June/2020

e Sep/2019: Call for proposals for science modules
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Since then ... a lot has happened ...



FINK in the broker landscape

Lasair Alerce
e Main added value is content + cross-match e High emphasis in hierarchical classification,
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e Built to fulfill the needs of the British transient e Aim to explore the potential of follow-up
community facilities in Chile
e Main users focused on UK telescopes e Hosts data challenges and hackathons
ANTARES Fink
e High emphasis in the front-end and api e State of the art ML techniques: adaptive ML
development and Bayesian NN
e Important ML component being adapted, e Aim to fulfil the needs of the French+
focus on early classification community and explore the potential in the
e No specific events for community LSST data base hosted at CC

engagement (as of April/2019) e Emphasis on community-driven science




FInk important remark
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FInk important remark

How?

FOCUSing N Early development of tailored
specific

science modules.

SCIENCE CasSes Tools at our disposal:
Is vital!

e Increasingly accurate
classification and anomaly scoress
(adaptive learning)

e (Calibrated probabilities (Bayesian



FINK  modules under development

e Supernova photometric classification in ZTF alert stream
o see Marco’s talk

e Enabling kilonova discovery with ML in Fink (also GW)
o Biswajit Biswas - M1 student working now remotely, at LPC-Clermont from
April/2020

e Looking for remote calcium reach transients in ZTF data
o  Christopher Frohmaier (ICC - Portsmouth, UK)

e Connections with SVOM

o see Nicolas’ and Damien’s talks



FINK  modules under discussion

e First tests with microlensing
o Tristan Blaineau

e (Connections with other brokers
o Alexis Coleiro, Andrii Neronov, Volodymyr Savchenko

e Deblending

o Alexandre Boucaud

Next in line:

e Anomaly detection
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FINK  next steps

e Major advantage of working with Fink is the opportunity
to develop a tailored science module with the help of the

development team.

e |f you have one in mind, the time to talk is now!
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FINK  next steps

e Major advantage of working with Fink is the opportunity
to develop a tailored science module with the help of the

development team.

e |f you have one in mind, the time to talk is now!

Regular monthly telecons to start in March/2020

Opportunity to discuss science modules more broadly



LSST Broker landscape

AleRCE

Lasair
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Pre-selection Selection LSST live!
phase
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Covering LSST science pillars:
e Probing Dark Matter and Dark Energy
e Taking an Inventory of the Solar System
e Exploring the Transient Optical Sky
e Mapping the Milky Way

As of 2019 13



Some Data Challenges...

e Forecasted: 10 million alerts per T T - o Frenchsite
night... e -
o Current serialisation implies
~82KB/alert, 800 GB/night,
3PB in 2030.
e 98% of alerts must be transmitted
with 60 seconds of readout...

LSST Data Facility

ational Center for Supercomputing’
a

o ... and processed before the
next night!
. . ; / - Summit Site
e Wires to send alerts worldwide are ™ o A =

not infinitely big...




Concretely...




Fink challenges & design

Fink’s design is driven by:
Maximizing the scientific return on S APACHE

LSST and related experiments over

the next decade: SVOM, CTA, p Qr ™

Integral, KM3NET, ...
Working efficiently at scales: real -

time and post-processing.

Having a good integration with the
current ecosystem: we are not
alone!

@ python’

openstack’
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Alert processing In Fink

Filters

Fink

Broker

Science
DB




Alert processing In Fink
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Science modules

Add values to the raw alerts

« Broker services (e.g. cross-match)
« User-defined modules (e.g. classification)

BlLLac

Alert database
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number of alerts

Filters and data reduction

104 .

103 _

102 .

101 .

100 .

Entries for ZTF all data : 208920 (100.0%)
20191104

+ quality cuts : 80295 (38.4%)

+ no SIMBAD counterpart : 65141 (31.2%)

+ no GAIA or PANSTARRS counterpart : 21895 (10.5%)
+ no close Solar System Objects : 827 (0.4%)

ZTF all data

+ quality cuts

+ no SIMBAD counterpart

+ no GAIA or PANSTARR counterpart

+ no close Solar System Objets
| |
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magnitude
More at the Fink Workshop on Thursday 20



Joining information

Challenge: different data formats, “d““‘*b\'
different communication protocoils. | A -rkmlo{
Current solution: 9 ? L\Gofiig

e Use Comet to receive VOEvents pﬁ;—% g -

1

. k
e Convert on-the-fly into a . 9
Fink-friendly stream .

e Perform coincidence using a | Al
temporal window of few minutes '- /kji;l : CTA
| ﬁc\'cor.& e

Status: (largely) experimental.

—




User interface(s)

EI16.1/00299184: ¥ live | Help
‘ Cluster by AMI Tag || Cluster by group size | Expand all clusters |

Two entry points for users: e T
e Fink streams: Fink workshop on Thursday!
e Science DB: Graph oriented DB (J. Hrivnac).
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Prototype status

Deployed broker instance for R&D in the VirtualData Cloud (UPSaclay)
e Communication: Apache Kafka cluster (5 machines, 20 cores)
e Processing: Apache Spark cluster (11 machines, ~200 cores)
e Science DB: Apache HBase (1 machine, 6 cores).

Science storage: O(10)TB distributed storage (HDFS, Ceph + s3)

Tests in near-real condition with good scalability:
e LSST rate: 10,000 alerts / 30 seconds (tested up to 10x this with margins).
e LSST science content: Alerts coming from ZTF (LSST pathfinder).
e Science filters: CDS xmatch, SN la like, ...

More information on the Calcul session.
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Monitoring performances
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Fink R&D projects

Continuous R&D projects to explore the outside world, e.g.

Improving storage layer to enforce data integrity (C. Arnault)
Introducing Graph DB for visualising data at Petascale (J. Hrivhac)

o
o
e Distributed Machine Learning to classify objects faster than light
([
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Towards the full proposal...

Recent milestones: MoU with ZTF
e Fink joins AMPEL, ANTARES, ALeRCE, Lasair, ...

Keep developing the client and the science DB access
e Improve your experience
e How to explore and visualise efficiently PB of data?

Keep integrating science modules
e Ongoing work with SN, GRB, ...

Improve Fink integration within the current networks and communities

Deploy the production version at CC-IN2P3
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