

Overview on Direct Dark Matter Search

Davide Franco Laboratorie APC SFP - 31/03/2022

Dark Matter?

What about the DM particle candidate?

- 25% total energy or 80% total mass of the Universe
- New unknown particle
- Not hot, better cold
- Neutral particle (dark)
- Stable or long lived
- Possibly a relic from Early Universe
- Very feebly interacting

Dark Matter Particles?

AXION ?

• Solve CP problem in QCD

Sterile Neutrino ?

- 3.5 keV X-ray from indirect observation
- Cold: > 7 keV mass scale

WIMP?

- Supersymmetry (getting weaker...)
- Naturally matches current DM density

Weakly Interacting Massive Particles

Accelerator)

 χ + Nucleus $\rightarrow \chi$ + Nucleus

Production at colliders

-PandaX PRL 117, 121303 (2016) DarkSide-50 PRL 121, 081307 (2018 PRL 118, 021303 (2017)

4

JHEP 1801 (2013) 126 E^{nis} +Z(I) to = 13 TeV, 38.1 fb PLB 776 (2017) 313 E^{miss}₇+V(had) (5 = 13 TeV, 36.1 fb) JHEP 10 (2018) 180 CRESST III arXiv.1904.00495

Eur. Phys. J. C 77 (2017) 393 E^{nim}+jet (2 - 13 TeV, \$6.1 fb¹

E^{nim}+7 (5 = 13 TeV, 36.1 fb⁻¹

E^{miss}+X

16 = 10 TeV, 08.1 IS" PRD 58 (2018) 032016

EPJG 78 (2018) 565

tt resonance Te - 10 TeV, 06.1 fb*

ATLAS-CONF-2016-070 (Preliminary

Djet + ISP #S = 13 TeV, 15.5 fb⁴

Djet TLA (5 - 10 TeV, 28.0 fb-1 PRL 121 (2018) 0818016

PRD 96, 052004 (2017)

Djet 🕫 = 13 TeV, 37.0 fb⁻¹

Direct Detection: Observables

Annual Modulations

Earth rotation around the Sun => largest speed of the dark matter particles in the Milky Way halo relative to the Earth around June 2nd and smallest in December Expected seasonal variation at 2-10% level

Directionality

The recoil rate, in the Galactic rest frame, is highly anisotropic: the rate in the forward direction is roughly an order of magnitude larger than that in the backward direction

Statistics?

- ρ_{χ} local dark matter density = 0.3 GeV/cm³
 - (~1 100 GeV WIMP in an American coffee cup)
- m_{γ} : WIMP mass
- $\sigma_{\chi N}$: cross section
- <V> ~ 230 km/s
- Assuming $m_{\chi} = 100 \text{ GeV/c}^3$ and $\sigma_{\chi N} = 10^{-47} \text{ cm}^2$, R ~ 1 event / ton / year in a liquid argon target

Complementarity

if an excess of events is observed, a verification with a detector with a different target is necessary.

Backgrounds and Detector Requirements

Backgrounds

- **Cosmic** rays and cosmogenic isotopes

Electron / Nuclear Recoils

- perfectly mimic WIMP interactions

WIMP detector requirement:

- Massive target
- Low-energy threshold
- Ultra-low background
- Signal/background discrimination

• Natural (²³⁸U,²³²Th,²³⁵U,²²²Rn,...) and anthropogenic (⁸⁵Kr,¹³⁷Cs,...) radioactivity

• **Neutrinos** (solar, atmospheric, diffuse supernovae)

• The majority of events induce electron recoils

• Just a tiny faction, mostly **neutrons**, are responsible of nuclear recoils, which

Dark Matter Experiments

Xenon Argon Bolometers Scintillators Si Detectors Gas Detectors

Ge,Si: CDMS Ge: EDELWEISS

A few eV for ion-electron production

C,F,I,Br: PICASSO, COUPP Ge: Texono, CoGeNT $CS_2, CF_4, ^{3}He:$ DRIFT, DMTPC, MIMAC $Ar+C_2H^6$: Newage

Charge

Direct Detection Techniques

Phonons

Al₂O₃: CRESST A few meV for phonon production

 $CaWO_4$, Al₂O₃: CRESST

LAr: DarkSide ArDM LXe: Xenon **PandaX** LUX

LXe: XMASS LAr/LNe: Deap/Clean

NaI: Dama/Libra

NaI: Anais

CsI: KIMS

10-100 eV for light production in noble liquids and in scintillators

Light

- Annual modulations with high radio-purity Nal crystals
- Exposure: 2.86 ton/year
- $\bullet\,$ Phase: compatible with June 2nd within 2σ
- Evidence at ~14 σ

Period = 0.99834±0.00067 yr

Phase = 142.4 ± 4.2 d (expected 153)

Davide Franco - APC

The DAMA/LIBRA modulation

e-Print: 2110.04734

State of the Art

11

State of the Art

Characteristics

- Operating at mK temperature
- Excellent energy resolution
- Very low thresholds >0.2 keV
- Limited crystal sizes (4 g 1.4 Kg)
- Good discrimination with phonon vs light/charge

Bolometers: Phonons vs Photons

CRESST-III: at Gran Sasso lab (Italy)
10 24 g CaWO4 scintillating bolometers at 15 mK
30 eV energy threshold achieved
Run 3 started on July 2020
→ best limits for WIMP-NR down to 160 MeV
A.H. Abdelhameed et al, Phys. Rev. D 100 (2019) 102002

Phase 2: 100 crystals Goal 10 eV threshold

 reflective and scintillating housing

- light detector (with TES)
- block-shaped target crystal -(with TES)

- CaWO₄ iSticks (with holding clamps & TES)

EDELWEISS-III: at Modane lab (France)

- 24 Ge detectors, 870 g each, 200 eV_{ee} threshold
- \rightarrow very good results at 5-30 GeV and limits also on ALP
- L. Hehn et al, Eur. Phys. J. C 76 (2016) 10 548

EDELWEISS-subGeV: above ground and at Modane

33 g Ge bolometers, 55 eV energy threshold (heat) → exploring DM mass down to 45 MeV with Migdal + dark photons

E. Armengaud et al, Phys. Rev. D 99 (2019) 082003 Q. Arnaud et al, arXiv:2003.01046

Davide Franco - APC

Bolometers: Phonons vs Charge

SuperCDMS: at Soudan lab (US)

- 15 Ge detectors, 600 g each, 70 eV threshold
- Exploiting the Neganov-Luke (NTL) effect at high bias voltage (HV) to convert charge into heat
- \rightarrow results down to **1.5 GeV** from different analyses
- R. Agnese et al, Phys. Rev. Lett. 120 (2018) 061802; Phys. Rev. D 99 (2019) 062001
- 0.93 g / 10.6 g Si detectors on surface \rightarrow results on e- scattering and dark photons / nucleon scattering
- D. W. Amaral, et al, arXiv:2005.14067, I. Alkhatib et al, arXiv:2007.14289
- SuperCDMS: at SNOLAB (Canada) Start mid-2021, 30 kg, Ge and Si NTL detectors

Silicon charge-coupled devices (CCDs): charge produced in the interaction drifts towards the pixel gates, until readout.

+ 3D position reconstruction possible: interaction correlated from charge diffusion

+ Effective particle identification and background rejection

Davide Franco - APC

Low-Mass: CCDs

DAMIC at SNOLAB

• 7 CCDs (6 g each) since 2017 - Threshold 50 eVee

- \rightarrow results also on e scattering and hidden photon DM PRL 118, 141803 (2017); PRL 123 (2019) 181802 \rightarrow recent on nucleon scattering from 11 kg day: excess of ionization events at 50-200 eVee?
 - A. Aguilar-Arevalo et al, arXiv:2007.15622

DAMIC-M at Modane

• 50 CCDs (13.5 g each) for kg-year exposures - Commissioning in 2023. → Skipper readout: reduce noise and achieve single electron counting with high resolution

SENSEI at Fermilab

- Prototypes with 0.0947 g and 2 g total active mass at MINOS Hall (100 m underground) \rightarrow constraints on e scattering and hiddensector candidates
- Proposal to install a 100-g detector (48 CCDs) at SNOLAB

OSCURA: 10 kg in 2027

Spherical Proportional Counter: very low energy threshold and very low capacitance (<1 pF). Anode: small ball at the center, avalanche region.

I. Giomataris et al, JINST 2008 P09007

Spherical gaseous detectors

- SEDINE detector at Modane
- 60-cm NOSV copper sphere
- Filled with Ne-CH₄(0.7%) at 3.1 bar (280 g active mass)
- 42 d WIMP search run, 50 eVee threshold Q. Arnaud et al, Astropart. Phys. 97, 54 (2018)

NEWS-G at SNOLab

- 140-cm low activity copper sphere, built in France, commissioning data with CH4, now at SNOLAB.
- Lighter targets: H, He
- Single electron response (gain, drift and diffusion times, • • •)
- Q. Arnaud et al, Phys. Rev. D 99 (2019) 102003

Perspectives in the low-mass range

	LAr	LXe
WIMP SI cross section	Lower cross-section => need more massive target	Higher-cross section
WIMP SD cross section	Not accessible	Accessible
Kinematics	Lighter nucleus and higher scintillation efficiency: low ionization threshold	Heavier nucleus and higher quenching: >1 GeV/c ²
Radio-purity	³⁹ Ar contamination (fixed: see next slides)	Intrinsically pure
Density	1.4 g/cm ³	3.1 g/cm ³
Temperature	87.2 K (close to nitrogen)	166.4 K
S1 Pulse Shape Discrimination	Yes (singlet ~7 ns; triplet ~1600 ns)	Very limited (singlet: ~2 ns; triplet: ~27 ns)
Cost and availability	Generically cheap (~\$/kg) + extra costs for underground extraction Abundant	Expensive (~kDollar/kg) Limited world production

Noble liquids: Xenon vs Argon

- **S2/S1** ratio
- S1 **PSD** (if available)

Dual-phase Time Projection Chamber

19

Multiple Scatter Rejection

Davide Franco - APC

Event Topology

S2/S1 Particle Discrimination

Phys.Rev.Lett. 127 (2021) 26, 261802

LXe High-Mass Results: PandaX-4T

S2-only analysis

- S1 detection efficiency ~10-20% => dropped
- Ionization electron amplification factor ~10-30

- Very low threshold
- Quite high-resolution
- Very massive if compared with solid-state detectors
- Much higher radiopurity
- Limited background discrimination (only multiple scatters rejection)

Light Dark Matter Search

SI, SD, Lephotphilic, and Migdal Effect

Phys.Rev.Lett. 123 (2019) 25, 251801 Phys.Rev.Lett. 123 (2019) 24, 241803

0.65 tonne-years with only 76 \pm 2 events/(tonne \times year \times keV) between 1-30 keV

Davic

The XENON1T excess

Phys.Rev.D 102 (2020) 7, 072004

URANIA

- 39Ar produced from cosmic ray interactions primarily from 40Ar in the atmosphere
- 39Ar activity in atmospheric LAr ~ 1Bq/kg
- LAr extracted from Colorado CO_2 wells ~ 0.7 mBq / kg

Davide Franco - APC

LAr: DarkSide and the ³⁹Ar issue

ARIA

- cryogenic isotopic distillation plant
- being installed in a mine shaft at CarboSulcis, S.p.A. in Nuraxi-Figus (SU), Italy
- cryogenic isotopic distillation plant
- being installed in a mine shaft at CarboSulcis, S.p.A. in Nuraxi-Figus (SU), Italy
- 350m tall distillation column
- designed to reduce ³⁹Ar isotopic
 fraction in UAr by factor 10 per
 pass

LAr scintillation times:

- singlet ~ 6 ns
- Triplet ~ 1600 ns

Singlet-to-triplet ratios:

- Nuclear recoils ~ 0.7
- Electron recoils ~ 0.3

Davide Franco - APC

The LAr Pulse Shape Discrimination

Background-free over more than 530 days!

The S2-only analysis with DarkSide-50

Davide Franco - APC

- The TPC directly immersed in a LAr bath (600 ton) => minimisation of TPC materials and hence contamination
- Equipped with 15 m² of SiPM (~200,000 SiPM)
- Gd-acrylic veto

New technologies with DarkSide-20k

A
P

	DS-20k requirement	SiPM tile (PDM)
Surface	5x5cm ²	24cm ² prototype 25cm ² final PDM
Power dissipation	<250mW	~170mW
PDE	>40%	$50\% \cdot \varepsilon_{geom} = 45\%$
Noise Rate	<0.1cps/mm ²	0.004cps/mm^2
Time Resolution	O(10ns)	16ns
Dynamic Range	>50	~100

Today

Davide Franco - APC

Noble Liquids

2022-2032

Light-dark matter candidates

- Several channels to explore (WIMP-NR + Migdal, leptophilic, dark photons, axions)
- Several experiments / different techniques
 - Solid-state cryogenic detectors: scintillating bolometers, small mass Ge and Si crystals.
 - Liquid noble detectors (Xe, Ar): operated in S2 only mode
 - Purely ionization detectors: Ge, CCDs, gas detectors
 - Bubble chambers

High-mass WIMPs:

- Need of LXe / LAr complementarity
- In about 10 years we will reach the neutrino floor: what next?

• the community is moving towards two large experiments based on LXe (e.g. DARWIN) and LAr (e.g. ARGO)

Dark Matter Particles?

- Naturally matches current DM density

Dark Matter Particles?

- Naturally matches current DM density

