

Laboratoire de Physique des 2 Infinis





## Sonder la nouvelle physique via la désintégration double béta sans émission de neutrino

#### Yoann KERMAÏDIC

Journée SFP – évènements rares LPNHE - Paris

31 mars 2022



## Neutrinos meet rarity

• 1st neutrino discovered in 1956 /  $v_{\tau}$  neutrino in 2000!

#### Interaction cross-section extremely feeble

- Massive detectors (≥ 1000 t.)
- $\circ$  (Very) long measurement time ( $\gg$  1 yr including upgrade)
- Intense flux (nuclear, accelerator, sun, ...)



## Neutrinos meet rarity

• 1st neutrino discovered in 1956 /  $v_{\tau}$  neutrino in 2000!

#### Interaction cross-section extremely feeble

- Massive detectors ( $\gtrsim 1000$  t.)
- $\circ$  (Very) long measurement time ( $\gg$  1 yr including upgrade)
- Intense flux (nuclear, accelerator, sun, ...)

#### • Since 1998, only sector with new physics signature in laboratory

Neutrino flavor oscillation = massive neutrinos not predicted by the SM
 20 years after this discovery : no fundamental explanation / mass still not measured

#### Neutrino mass measurement

- $\circ$  Sensitivity  $\times$  500 in 70 years
- $\circ$  status : last upper limit  $m_{
  m v} < 0.8~{
  m eV}/c^2$  @90% C.L. (Feb. 2022)!



[Nature Physics]

## Rich measurement program

#### • PMNS mixing matrix measurement:

- 2 major experiments running to probe  $\mathcal{L}P_{\nu}$ :  $\mathbb{Z}\mathbb{K}$  &  $\mathcal{N}O \vee \mathcal{N}$
- + CLIVE & Manual will take over for a non ambiguous measurement
- > status : all matrix elements have been measured but the CP phase and mass ordering
- Sterile(s) neutrino(s) near nuclear reactors
  - PROSPECT SOLID ...
  - > status : reactor anomaly hypothesis largely excluded but other discrepancies remains

#### • Coherent elastic neutrino - nuclei scattering



> status : discovered in 2017 near CsI detectors, plans for more precise measurements

## Rich measurement program

#### • PMNS mixing matrix measurement:

- 2 major experiments running to probe  $\ell P_{\nu}$ : **T2** & ∧ ∨ ∨ ∧
- + CLIVE & Myper-Kamiokande will take over for a non ambiguous measurement
- > status : all matrix elements have been measured but the CP phase and mass ordering
- Sterile(s) neutrino(s) near nuclear reactors
  - PROSPECTO SOLIDO ...
  - > status : reactor anomaly hypothesis largely excluded but other discrepancies remains

#### • Coherent elastic neutrino - nuclei scattering



> status : discovered in 2017 near CsI detectors, plans for more precise measurements

#### Nature of neutrinos

- Neutrinoless double-beta decay
- status : escape detection for ... 70 years





## « Light neutrino exchange »



$$T_{1/2}^{0\nu}{}^{-1} = g_A^4 G^{0\nu} |M^{0\nu}|^2 \frac{\langle m_{\beta\beta} \rangle^2}{m_e^2}$$

experimentally probed half-life axial vector coupling cnst = 1.25(?) nuclear matrix element (NME) phase space factor electron mass

Attractive: Minimal model without requiring new particles (mediator = active  $\nu$  + SM bosons)

 $T_{1/2}^{0\nu}$ 

 $g_A M^{0\nu}$ 

 $G^{0\nu}$ 

 $m_e$ 

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^{2} m_{i} \right| \qquad \Sigma = \sum_{i=1}^{3} m_{i} \qquad m_{\beta} = \sqrt{\left| \sum_{i=1}^{3} U_{ei}^{2} m_{i}^{2} \right|} \qquad \qquad \mathcal{U} = \text{PMNS matrix}_{[\text{NuFit}]}$$

## « Light neutrino exchange »



• Attractive: Minimal model without requiring new particles (mediator = active v + SM bosons)

$$m_{\beta\beta} = \left| \sum_{i=1}^{3} U_{ei}^2 m_i \right| \qquad \Sigma = \sum_{i=1}^{3} m_i \qquad m_\beta = \sqrt{\left| \sum_{i=1}^{3} U_{ei}^2 m_i^2 \right|} \qquad \qquad \mathcal{U} = \text{PMNS matrix}_{[\text{NuFit}]}$$

- Direct relationship with the cosmological neutrino mass sum and direct mass measurement
- Rich complementarity in case of non-zero measurement in one of the channels NB: Hubble constant "problem" shows some limitations

Journée SFP - évènements rares

## Cosmological detour : $H_0$ « problem »

- Strong correlation between sum of the neutrino masses and  $H_0$
- Special workshop organized in July 2019 to review all the H<sub>0</sub> measurements:
   "Tensions between the Early and the Late Universe" <a href="http://online.kitp.ucsb.edu/online/enervac-c19/">http://online.kitp.ucsb.edu/online/enervac-c19/</a>



We should remain aware of the models dependencies =)

## « Light neutrino exchange »



- The current situation on the  $0\nu\beta\beta$  decay side
  - > Start to cover the inverted ordering  $m_{\beta\beta}$  band prediction

## « Light neutrino exchange »



• Next gen  $0\nu\beta\beta$  decay experiment reach

 $\succ$  Entirely cover the inverted ordering  $m_{\beta\beta}$  band prediction for most NMEs

## Neutrinoless double beta decay - $0\nu\beta\beta$



#### Such process:

- ✓ violates the Lepton Number by 2 units = New Physics! (O(5), O(...))
- ✓ determines the nature of neutrinos: Majorana particle  $\nu = \overline{\nu}$  [Valle 1982]
- ✓ gives information on the  $\nu$  mass via  $m_{\beta\beta}$  (light neutrino exchange scenario)
- ✓ has never been observed so far

# Understanding the matter-antimatter asymmetry of the Universe

Baryonic asymmetry of the Universe :

$$\eta_{\text{CMB}} = rac{n_b - n_{\overline{b}}}{n_{\gamma}} = (6.12 \pm 0.06) \times 10^{-10}$$

- Sakharov criteria:

B, C, CP, int. out of equilibirium

[Sakharov, 1967]

- Many theoretical scenarios including

High energy scale leptogenesis (electroweak baryogenesis ...)

- Leptogenesis popular because v is a unique particle Only left-handed,  $v = \overline{v}$  ?, no electric charge





Density of Ordinary Matter (Relative to Photons

#### [Fukugita, 1986]

|              | Standard Model<br>scenario                                                                                                      | Beyond SM<br>scenario                                                                                                          |
|--------------|---------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|
| [Huet, 1994] | Baryogenesis<br>Excluded<br>- $m_{\rm H}$ too high / phase transition<br>of 1st order<br>- Too weak CPV<br>$\eta \sim 10^{-26}$ | LeptogenesisPlausible - to be falsified-Enriched neutrino sector-CPV in the neutrino sector-Majorana ν-Lepton Number Violation |

## Other new physics searches

• Next-gen provides ultra low background datasets with large exposure

#### • Can look for rare events:

- any shape distortion of the standard  $2\nu\beta\beta$  decay spectrum
- unknown very low rate gamma lines
- unexpected time modulation in some rates

#### • These can be caused by:

- violation of fundamental principles (Lorentz invariance, Pauli Exclusion Principle, CPT symmetry, ...)
- new particles (Sterile neutrinos, WIMPs, axions, ...)
- new interactions (B-violating tri-nucleon decay, charge violating electron decay, ...)

See recent reference in [2202.01787] review

### Two neutrinos double beta decay - $2\nu\beta\beta$



#### Such process:

- ✓ energetically favored in some isotopes (<sup>76</sup>Ge, <sup>100</sup>Mo, <sup>130</sup>Te, <sup>136</sup>Xe, ...)
- ✓ is predicted by the SM [Goppert-Mayer 1935]
- ✓ is measured experimentally



•  $2\nu\beta\beta$  continuum + peak at  $Q_{\beta\beta}$ 

• 
$$T_{1/2}^{0\nu} = \ln 2 \cdot \frac{N_A}{m_A} \cdot \epsilon \cdot \epsilon \cdot \frac{1}{N^S}$$

- Key points:
  - $\circ$  Avogadro number:  $N_A$
  - $\,\circ\,$  Efficiency [%] x exposure [kg.yr]:  $\epsilon$  .  $\mathcal E$
  - Energy resolution [keV]

$$\circ$$
 BI =  $\frac{N^B}{\varepsilon \cdot \Delta E}$  [cts/(keV.kg.yr)]

**Topology :** • Signal = Single-Site Event (SSE) • Background  $\gamma$  = Multi-Site Event (MSE)  $\alpha/\beta$  = Surface Event







## Figure of merit – discovery potential

« minimal signal strength for which a discovery is expected with  $3\sigma$  C.L. »



see detailed discussion in: [1705.02996]

Defines the experimental design in terms of

exposure (mass et duration)

background goal (passive/active veto, detector design, analysis techniques)
 Journée SFP - évènements rares
 Yoann Kermaïdic

## Underground laboratories worldwide



- Underground = passive background suppression for « free »
- Isotopic activation suppression (neutron capture– e.g.  $^{76}\text{Ge} + n \rightarrow ^{77m}\text{Ge} \rightarrow ^{77}\text{As} + 2.7 \text{ MeV}$ )
- Large experimental infrastructure required (shielding, cryostat, instrumentation)
- Size/depth/access compromise taken into account by the collaborations

## The experimental landscape

#### See fresh exhaustive review [2202.01787]



## The experimental landscape

#### See fresh exhaustive review [2202.01787]





#### Détecteur semi-conducteur GERDA @ LNGS

- <sup>76</sup>Ge  $Q_{\beta\beta} = 2039$  keV  $T_{1/2}^{2\nu} \sim 2 \times 10^{21}$  yr
- High detection efficiency de (detector = source)
- Enrichment up to 88% active mass  $\sim$  40 kg
- New detector technology (0.7 kg  $\rightarrow$  3 kg /det.)
- Excellent energy resolution : < 3 keV FWHM @  $Q_{\beta\beta}$
- "Background-free" experiment at final exposure (LAr veto + PSD)
- Sensitivity  $T_{1/2}^{0\nu} > 10^{26}$  yr for the 1<sup>st</sup> time!
- Final exposure of 100 kg.yr reached in Nov. 2019
- $T_{1/2}^{0\nu} > 1.8 \times 10^{26} \text{ yr} m_{\beta\beta} < [79 180] \text{ meV} (90\% \text{ C. L.})$
- Successor: LEGEND







#### [2104.06906]

#### Bolometric detector CUORE @ LNGS

- <sup>130</sup>Te  ${m Q}_{metameta}={m 2528}~{m keV}$   $T^{2
  u}_{1/2}\sim 8 imes 10^{20}~{m yr}$
- 988 TeO<sub>2</sub> crystals with an active mass of 206 kg
- Natural abondance: 35% no enrichment
- Largest mK cryostat in the world
- Very good energy resolution : 7.8 keV FWHM @  $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 0.2 \times 10^{26} 
  m yr m_{etaeta} < [90 305] 
  m meV (90\% 
  m C. L.)$  with 1038.4 kg.yr
- Stable operation of the cryostat demonstrated in 2021 continue the data taking while waiting for CUPID
- Problematic  $\alpha/\gamma$  background  $\rightarrow$  active veto needed (CUPID)





[<u>2202.08716]</u>

#### Bolometric detector CUPID-Mo @ LSM

- <sup>100</sup>Mo  $m{Q}_{m{etaeta}}=3035$  keV  $T_{1/2}^{2
  u}\sim7 imes10^{18}$  yr
- 20 Li<sub>2</sub>MoO<sub>4</sub> bolometers ran at 20 mK with improved radiopurity w.r.t. CUORE
- Enrichment up to 97% active mass  $\sim$  4 kg
- New veto technology: scintillating photons collection
- Very good energy resolution: 7.4 keV FWHM @  $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 0.02 \times 10^{26} \text{ yr} m_{\beta\beta} < [280 480] \text{ meV} (90\% \text{ C. L.})$ with a final 1.5 kg.yr (481 days) exposure
- Launching pad for CUPID (together with CUPID-0)







# Liquid scintillator detector[2203.02139]KamLAND-Zen @ Kamioka

- 136Xe  ${m Q}_{metameta}={m 2458}\,{m keV}$   $T^{2
  u}_{1/2}\sim 2 imes 10^{21}\,{
  m yr}$
- Large LXe volume within a radiopure balloon immersed within a PMT instrumented liquid scintillator volume
- Enrichment up to 91% active mass  $\sim$  745 kg
- Balloon volume and mass increase x2 in 4 ans
- post-Fukushima <sup>110m</sup>Ag contamination removed + overall bkg ÷10
- Low energy resolution: 250 keV FWHM @  $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 2.3 \times 10^{26} \text{ yr} m_{\beta\beta} < [36 156] \text{ meV} (90\% \text{ C. L.})$ with 523.4 days exposure





#### Liquid Xe TPC detector EXO-200 @ WIPP

- [PRL, 2019]
- 136Xe  ${m Q}_{metameta}={m 2458}\,{m keV}$   $T^{2
  u}_{1/2}\sim 2 imes 10^{21}\,{
  m yr}$
- LXe cylindrical *Time Projection Chamber*
- Enrichment up to 81% active mass  $\sim$  100 kg
- Effective scintillation-ionisation correlation
- Event reconstruction (x-y-z) + fiducialization for SSE vs MSE topology
- Low energy resolution: 60 keV FWHM @  $Q_{\beta\beta}$
- $T_{1/2}^{0\nu} > 0.4 \times 10^{26} \text{ yr} m_{\beta\beta} < [78 239] \text{ meV} (90\% \text{ C. L.})$





#### Tracker-calorimeter detector SuperNEMO @ LSM

- Multi-isotope approach with thin foils
- Important know-how in case of discovery by other experiments fine decay topology available (single electron spectrum/ang. dist.)
- Background mitigation by factor 30 w.r.t. NEMO-3
- Energy resolution : 8% @ 1 MeV
- Mass: 7 kg of <sup>82</sup>Se
- Demonstrator installation/commissioning at LSM Traco-calo detector is operational Background reduction setup (Ra, γ, n) to come in 22'





# NAME <th

Journée SFP - évènements rares

## Experimental state of the art

#### See fresh exhaustive review [2202.01787]

|                                   |                     |                               |                | $m_{ m iso}$                          | $\varepsilon_{ m act}$ | $\varepsilon_{ m cont}$ | $\varepsilon_{\mathrm{mva}}$ | σ                | ROI        | $\varepsilon_{ m ROI}$ | ε                                                      | B                                                             | $\lambda_b$                                    | $T_{1/2}$                             | $m_{etaeta}$     |
|-----------------------------------|---------------------|-------------------------------|----------------|---------------------------------------|------------------------|-------------------------|------------------------------|------------------|------------|------------------------|--------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|---------------------------------------|------------------|
| Experiment                        | Isotope             | Status                        | Lab            | [mol]                                 | [%]                    | [%]                     | [%]                          | $[\mathrm{keV}]$ | $[\sigma]$ | [%]                    | $\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr}\right]$ | $\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$ | $\left[\frac{\text{events}}{\text{yr}}\right]$ | [yr]                                  | $[\mathrm{meV}]$ |
| High-purity Ge det                | ectors (Sec         | e. VI.B)                      |                |                                       |                        |                         |                              |                  |            |                        |                                                        |                                                               |                                                |                                       |                  |
| GERDA-II                          | $^{76}$ Ge          | completed                     | LNGS           | $4.5 \cdot 10^2$                      | 88                     | 91                      | 79                           | 1.4              | -2,2       | 95                     | 273                                                    | $4.2 \cdot 10^{-4}$                                           | $1.1 \cdot 10^{-1}$                            | $1.2\cdot 10^{26}$                    | 93-222           |
| MJD                               | $^{76}$ Ge          | completed                     | SURF           | $2.4 \cdot 10^{2}$                    | 90                     | 91                      | 89                           | 1.1              | -2,2       | 95                     | 166                                                    | $2.3 \cdot 10^{-3}$                                           | $3.7 \cdot 10^{-1}$                            | $5.5\cdot 10^{25}$                    | 140-334          |
| LEGEND-200                        | $^{76}$ Ge          | $\operatorname{construction}$ | LNGS           | $2.4 \cdot 10^3$                      | 91                     | 91                      | 90                           | 1.1              | -2,2       | 95                     | 1684                                                   | $1.0\cdot 10^{-4}$                                            | $1.7\cdot10^{-1}$                              | $1.5\cdot 10^{27}$                    | 27-63            |
| LEGEND-1000                       | $^{76}$ Ge          | proposed                      |                | $1.2\cdot 10^4$                       | 92                     | 92                      | 90                           | 1.1              | -2,2       | 95                     | 8736                                                   | $4.9\cdot10^{-6}$                                             | $4.3 \cdot 10^{-2}$                            | $1.3\cdot 10^{28}$                    | 9-21             |
| V                                 |                     |                               |                |                                       |                        |                         |                              |                  |            |                        |                                                        |                                                               |                                                |                                       |                  |
| Aenon time project                | 136 v -             | ers (Sec. VI.C)               | WIDD           | 1.0 1.03                              | 16                     | 100                     | 0.4                          | 01               | 0.0        | 05                     | 120                                                    | 47 10-2                                                       | 0.1 10+1                                       | 0 / 1025                              | 111 477          |
| EAU-200                           | 136 v               | completed                     | WIPP<br>CNOLAD | $1.2 \cdot 10^{4}$                    | 40                     | 100                     | 84<br>66                     | 31               | -2,2       | 95                     | 438                                                    | 4.7.10                                                        | Z.1 · 10 ·                                     | $2.4 \cdot 10^{-10}$                  | 111-4//          |
| NEXT 100                          | 136 V -             | proposed                      | SNOLAB         | $3.4 \cdot 10$                        | 04                     | 76                      | 00                           | 20               | -2,2       | 95                     | 13700                                                  | $4.0 \cdot 10^{-3}$                                           | $5.5 \cdot 10$                                 | $7.5 \cdot 10$                        | 0-27             |
| NEXT HD                           | 136 <b>V</b> o      | construction                  | LSC            | $0.4 \cdot 10$<br>7 4 10 <sup>3</sup> | 00                     | 10                      | 49                           | 10               | -1.0,1.0   | 00<br>65               | 1 800                                                  | $3.9 \cdot 10$                                                | $9.9 \cdot 10$<br>7.0 $10^{-2}$                | $7.0 \cdot 10$<br>2.2 $10^{27}$       | 10 50            |
| Danda V III 200                   | 136 <sub>V</sub>    | proposed                      | CIDI           | $1.4 \cdot 10$                        | 90<br>77               | 09<br>74                | 44<br>65                     | 1.1<br>91        | -0.5,1.7   | 76                     | 1 009                                                  | $4.0 \cdot 10$<br>2.0 $10^{-3}$                               | $1.2 \cdot 10$                                 | $2.2 \cdot 10$                        | 12-50            |
| FandaA-III-200                    | 136 <b>V</b> o      | construction                  | CJFL           | $1.3 \cdot 10$<br>$4.7 \cdot 10^3$    | 14                     | 100                     | 00<br>80                     | 31<br>25         | -1.2,1.2   | 70<br>94               | 374<br>440                                             | $5.0 \cdot 10$<br>1 7 10 <sup>-2</sup>                        | $1.1 \cdot 10$<br>7 5 · 10 <sup>+0</sup>       | $1.0 \cdot 10$<br>7.2 $10^{25}$       | 40-194<br>64 977 |
| LZ-nat                            | 136 <b>V</b> o      | proposed                      | SURF           | $4.7 \cdot 10$                        | 14                     | 100                     | 80                           | 25               | -1.4,1.4   | 04<br>94               | 440                                                    | $1.7 \cdot 10^{-3}$                                           | $7.3 \cdot 10^{+0}$                            | $7.2 \cdot 10$<br>$7.1 \cdot 10^{26}$ | 20.87            |
| Dorwin                            | 136 <sub>V</sub> o  | proposed                      | SURF           | $4.0 \cdot 10$<br>$2.7 \cdot 10^4$    | 19                     | 100                     | 00                           | 20               | -1.4, 1.4  | 04<br>76               | 4302                                                   | $1.7 \cdot 10$<br>2 5 · 10 <sup>-4</sup>                      | $8.0 \cdot 10^{-1}$                            | $1.1 \cdot 10^{27}$                   | 20-07            |
| Darwin                            | Ae                  | proposed                      |                | 2.7 · 10                              | 15                     | 100                     | 90                           | 20               | -1.2,1.2   | 70                     | 2312                                                   | $3.3 \cdot 10$                                                | 8.0 · 10                                       | 1.1 · 10                              | 11-12            |
| Large liquid scintill             | lators (Sec         | . <b>VI</b> .D)               |                |                                       |                        |                         |                              |                  |            |                        |                                                        |                                                               |                                                |                                       |                  |
| KLZ-400                           | <sup>136</sup> Xe   | completed                     | Kamioka        | $2.5 \cdot 10^3$                      | 44                     | 100                     | 97                           | 114              | 0, 1.4     | 42                     | 450                                                    | $9.9\cdot 10^{-3}$                                            | $4.4\cdot 10^{+0}$                             | $3.3\cdot 10^{25}$                    | 95-408           |
| KLZ-800                           | $^{136}$ Xe         | taking data                   | Kamioka        | $5.0\cdot 10^3$                       | 58                     | 100                     | 97                           | 114              | 0, 1.4     | 42                     | 1173                                                   | $1.4\cdot 10^{-3}$                                            | $1.6\cdot 10^{+0}$                             | $4.0\cdot 10^{26}$                    | 28-118           |
| KL2Z                              | $^{136}$ Xe         | proposed                      | Kamioka        | $6.7\cdot 10^3$                       | 80                     | 100                     | 97                           | 60               | 0, 1.4     | 42                     | 2176                                                   | $3.0\cdot 10^{-4}$                                            | $6.5\cdot 10^{-1}$                             | $1.1\cdot 10^{27}$                    | 17-71            |
| SNO+I                             | $^{130}\mathrm{Te}$ | construction                  | SNOLAB         | $1.0\cdot 10^4$                       | 20                     | 100                     | 97                           | 80               | -0.5, 1.5  | 62                     | 1232                                                   | $7.8\cdot 10^{-3}$                                            | $9.7\cdot 10^{+0}$                             | $1.8\cdot 10^{26}$                    | 31-144           |
| SNO+II                            | $^{130}\mathrm{Te}$ | proposed                      | SNOLAB         | $5.1\cdot 10^4$                       | 27                     | 100                     | 97                           | 57               | -0.5, 1.5  | 62                     | 8521                                                   | $5.7\cdot 10^{-3}$                                            | $4.8\cdot 10^{+1}$                             | $5.7\cdot 10^{26}$                    | 17-81            |
|                                   |                     |                               |                |                                       |                        |                         |                              |                  |            |                        |                                                        |                                                               |                                                |                                       |                  |
| Cryogenic calorime                | ters (Sec.          | <i>VI.E)</i>                  |                | 0                                     |                        |                         |                              |                  |            |                        |                                                        | 0                                                             | . 1                                            | 07                                    |                  |
| CUORE                             | <sup>130</sup> Te   | taking data                   | LNGS           | $1.6 \cdot 10^{3}$                    | 100                    | 88                      | 92                           | 3.2              | -1.4,1.4   | 84                     | 1 088                                                  | $9.1 \cdot 10^{-2}$                                           | $9.9 \cdot 10^{+1}$                            | $5.1 \cdot 10^{25}$                   | 58-270           |
| CUPID-0                           | <sup>82</sup> Se    | completed                     | LNGS           | $6.2 \cdot 10^{1}$                    | 100                    | 81                      | 86                           | 8.5              | -2,2       | 95                     | 41                                                     | $2.8 \cdot 10^{-2}$                                           | $1.2 \cdot 10^{+0}$                            | $4.4 \cdot 10^{24}$                   | 283-551          |
| CUPID-Mo                          | <sup>100</sup> Mo   | completed                     | LSM            | $2.3 \cdot 10^{1}$                    | 100                    | 76                      | 91                           | 3.2              | -2,2       | 95                     | 15                                                     | $1.7 \cdot 10^{-2}$                                           | $2.5 \cdot 10^{-1}$                            | $1.7 \cdot 10^{24}$                   | 293-500          |
| CROSS                             | <sup>100</sup> Mo   | construction                  | LSC            | $4.8 \cdot 10^{1}$                    | 100                    | 75                      | 90                           | 2.1              | -2,2       | 95                     | 31                                                     | $2.5 \cdot 10^{-2}$                                           | $7.6 \cdot 10^{-3}$                            | $4.9 \cdot 10^{25}$                   | 54 - 93          |
| CUPID                             | <sup>100</sup> Mo   | proposed                      | LNGS           | $2.5 \cdot 10^{3}$                    | 100                    | 79                      | 90                           | 2.1              | -2,2       | 95                     | 1717                                                   | $2.3 \cdot 10^{-4}$                                           | $4.0 \cdot 10^{-1}$                            | $1.1 \cdot 10^{27}$                   | 12 - 20          |
| AMORE                             | <sup>100</sup> Mo   | proposed                      | Yemilab        | $1.1 \cdot 10^{3}$                    | 100                    | 82                      | 91                           | 2.1              | -2,2       | 95                     | 760                                                    | $2.2 \cdot 10^{-4}$                                           | $1.7 \cdot 10^{-1}$                            | $6.7 \cdot 10^{26}$                   | 15 - 25          |
| Tracking calorimeters (Sec. VI.F) |                     |                               |                |                                       |                        |                         |                              |                  |            |                        |                                                        |                                                               |                                                |                                       |                  |
| NEMO-3                            | $^{100}$ Mo         | completed                     | LSM            | $6.9\cdot 10^1$                       | 100                    | 100                     | 11                           | 148              | -1.6, 1.1  | 42                     | 3                                                      | $9.3\cdot10^{-1}$                                             | $3.0\cdot 10^{+0}$                             | $5.6\cdot 10^{23}$                    | 505-866          |
| SuperNEMO-D                       | $^{82}$ Se          | construction                  | LSM            | $8.5 \cdot 10^1$                      | 100                    | 100                     | 28                           | 83               | -4.2,2.4   | 64                     | 15                                                     | $2.1 \cdot 10^{-2}$                                           | $5.0 \cdot 10^{-1}$                            | $8.6\cdot 10^{24}$                    | 201-391          |
| SuperNEMO                         | <sup>82</sup> Se    | proposed                      | LSM            | $1.2\cdot 10^3$                       | 100                    | 100                     | 28                           | 72               | -4.1, 2.8  | 54                     | 185                                                    | $5.4\cdot 10^{-3}$                                            | $9.8\cdot 10^{-1}$                             | $7.8\cdot 10^{25}$                    | 67-131           |

Journée SFP - évènements rares

## Experimental state of the art

#### See fresh exhaustive review [2202.01787]

|                      |                         |                               |         | $m_{ m iso}$       | $\varepsilon_{ m act}$ | $\varepsilon_{\mathrm{cont}}$ | $\varepsilon_{\mathrm{mva}}$ | σ          | ROI       | $\varepsilon_{ m ROI}$                                 | ε                                                             | B                                              | $\lambda_b$         | $T_{1/2}$           | $m_{etaeta}$ |
|----------------------|-------------------------|-------------------------------|---------|--------------------|------------------------|-------------------------------|------------------------------|------------|-----------|--------------------------------------------------------|---------------------------------------------------------------|------------------------------------------------|---------------------|---------------------|--------------|
| Experiment Isotope   | $\operatorname{Status}$ | Lab                           | [mol]   | [%]                | [%]                    | [%]                           | $[\mathrm{keV}]$             | $[\sigma]$ | [%]       | $\left[\frac{\mathrm{mol}\cdot\mathrm{yr}}{yr}\right]$ | $\left[\frac{\text{events}}{\text{mol}\cdot\text{yr}}\right]$ | $\left[\frac{\text{events}}{\text{yr}}\right]$ | [yr]                | $[\mathrm{meV}]$    |              |
| High-purity Ge det   | ectors (Sec             | . VI.B)                       |         |                    |                        |                               |                              |            |           |                                                        |                                                               |                                                |                     |                     |              |
| GERDA-II             | $^{76}\mathrm{Ge}$      | completed                     | LNGS    | $4.5 \cdot 10^2$   | 88                     | 91                            | 79                           | 1.4        | -2,2      | 95                                                     | 273                                                           | $4.2 \cdot 10^{-4}$                            | $1.1 \cdot 10^{-1}$ | $1.2\cdot 10^{26}$  | 93-222       |
| MJD                  | $^{76}\mathrm{Ge}$      | completed                     | SURF    | $2.4\cdot 10^2$    | 90                     | 91                            | 89                           | 1.1        | -2,2      | 95                                                     | 166                                                           | $2.3\cdot 10^{-3}$                             | $3.7 \cdot 10^{-1}$ | $5.5\cdot 10^{25}$  | 140-334      |
| LEGEND-200           | $^{76}$ Ge              | $\operatorname{construction}$ | LNGS    | $2.4\cdot 10^3$    | 91                     | 91                            | 90                           | 1.1        | -2,2      | 95                                                     | 1684                                                          | $1.0\cdot 10^{-4}$                             | $1.7\cdot 10^{-1}$  | $1.5\cdot 10^{27}$  | 27-63        |
| LEGEND-1000          | $^{76}$ Ge              | proposed                      |         | $1.2 \cdot 10^4$   | 92                     | 92                            | 90                           | 1.1        | -2,2      | 95                                                     | 8 736                                                         | $4.9\cdot 10^{-6}$                             | $4.3 \cdot 10^{-2}$ | $1.3\cdot 10^{28}$  | 9-21         |
| Xenon time project   | tion chamb              | ers (Sec. VI.C)               |         |                    |                        |                               |                              |            |           |                                                        |                                                               |                                                |                     |                     |              |
| EXO-200              | $^{136}$ Xe             | completed                     | WIPP    | $1.2 \cdot 10^{3}$ | 46                     | 100                           | 84                           | 31         | -2,2      | 95                                                     | 438                                                           | $4.7 \cdot 10^{-2}$                            | $2.1 \cdot 10^{+1}$ | $2.4 \cdot 10^{25}$ | 111-477      |
| ▶ nEXO               | $^{136}$ Xe             | proposed                      | SNOLAB  | $3.4\cdot 10^4$    | 64                     | 100                           | 66                           | 20         | -2,2      | 95                                                     | 13700                                                         | $4.0\cdot10^{-5}$                              | $5.5\cdot10^{-1}$   | $7.5\cdot10^{27}$   | 6-27         |
| NEXT-100             | $^{136}$ Xe             | $\operatorname{construction}$ | LSC     | $6.4 \cdot 10^2$   | 88                     | 76                            | 49                           | 10         | -1.0, 1.8 | 80                                                     | 167                                                           | $5.9\cdot10^{-3}$                              | $9.9\cdot10^{-1}$   | $7.0\cdot 10^{25}$  | 66 - 281     |
| NEXT-HD              | $^{136}$ Xe             | proposed                      |         | $7.4\cdot 10^3$    | 95                     | 89                            | 44                           | 7.7        | -0.5, 1.7 | 65                                                     | 1809                                                          | $4.0\cdot 10^{-5}$                             | $7.2\cdot10^{-2}$   | $2.2\cdot 10^{27}$  | 12-50        |
| PandaX-III-200       | $^{136}$ Xe             | $\operatorname{construction}$ | CJPL    | $1.3 \cdot 10^3$   | 77                     | 74                            | 65                           | 31         | -1.2, 1.2 | 76                                                     | 374                                                           | $3.0\cdot 10^{-3}$                             | $1.1\cdot 10^{+0}$  | $1.5\cdot 10^{26}$  | 45 - 194     |
| LZ-nat               | $^{136}$ Xe             | $\operatorname{construction}$ | SURF    | $4.7\cdot 10^3$    | 14                     | 100                           | 80                           | 25         | -1.4, 1.4 | 84                                                     | 440                                                           | $1.7\cdot 10^{-2}$                             | $7.5\cdot 10^{+0}$  | $7.2\cdot 10^{25}$  | 64 - 277     |
| LZ-enr               | $^{136}$ Xe             | proposed                      | SURF    | $4.6\cdot 10^4$    | 14                     | 100                           | 80                           | 25         | -1.4, 1.4 | 84                                                     | 4302                                                          | $1.7\cdot 10^{-3}$                             | $7.3\cdot 10^{+0}$  | $7.1\cdot 10^{26}$  | 20-87        |
| Darwin               | $^{136}$ Xe             | proposed                      |         | $2.7\cdot 10^4$    | 13                     | 100                           | 90                           | 20         | -1.2, 1.2 | 76                                                     | 2312                                                          | $3.5\cdot 10^{-4}$                             | $8.0 \cdot 10^{-1}$ | $1.1\cdot 10^{27}$  | 17-72        |
| Large liquid scintil | lators (Sec             | . VI.D)                       |         |                    |                        |                               |                              |            |           |                                                        |                                                               |                                                |                     |                     |              |
| KLZ-400              | $^{136}$ Xe             | completed                     | Kamioka | $2.5\cdot 10^3$    | 44                     | 100                           | 97                           | 114        | 0, 1.4    | 42                                                     | 450                                                           | $9.9\cdot10^{-3}$                              | $4.4\cdot 10^{+0}$  | $3.3\cdot 10^{25}$  | 95 - 408     |
| KLZ-800              | $^{136}$ Xe             | taking data                   | Kamioka | $5.0\cdot 10^3$    | 58                     | 100                           | 97                           | 114        | 0, 1.4    | 42                                                     | 1173                                                          | $1.4\cdot 10^{-3}$                             | $1.6\cdot 10^{+0}$  | $4.0\cdot 10^{26}$  | 28 - 118     |
| KL2Z                 | $^{136}$ Xe             | proposed                      | Kamioka | $6.7\cdot 10^3$    | 80                     | 100                           | 97                           | 60         | 0, 1.4    | 42                                                     | 2176                                                          | $3.0\cdot 10^{-4}$                             | $6.5\cdot10^{-1}$   | $1.1\cdot 10^{27}$  | 17 - 71      |
| SNO+I                | $^{130}\mathrm{Te}$     | construction                  | SNOLAB  | $1.0\cdot 10^4$    | 20                     | 100                           | 97                           | 80         | -0.5, 1.5 | 62                                                     | 1232                                                          | $7.8\cdot 10^{-3}$                             | $9.7\cdot 10^{+0}$  | $1.8\cdot 10^{26}$  | 31 - 144     |
| SNO+II               | $^{130}\mathrm{Te}$     | proposed                      | SNOLAB  | $5.1\cdot 10^4$    | 27                     | 100                           | 97                           | 57         | -0.5, 1.5 | 62                                                     | 8521                                                          | $5.7\cdot 10^{-3}$                             | $4.8\cdot10^{+1}$   | $5.7\cdot 10^{26}$  | 17-81        |
| Cryogenic calorime   | eters (Sec.             | VI.E)                         |         |                    |                        |                               |                              |            |           |                                                        |                                                               |                                                |                     |                     |              |
| CUORE                | $^{130}\mathrm{Te}$     | taking data                   | LNGS    | $1.6\cdot 10^3$    | 100                    | 88                            | 92                           | 3.2        | -1.4,1.4  | 84                                                     | 1088                                                          | $9.1\cdot 10^{-2}$                             | $9.9\cdot 10^{+1}$  | $5.1\cdot10^{25}$   | 58 - 270     |
| CUPID-0              | $^{82}$ Se              | completed                     | LNGS    | $6.2\cdot 10^1$    | 100                    | 81                            | 86                           | 8.5        | -2,2      | 95                                                     | 41                                                            | $2.8\cdot 10^{-2}$                             | $1.2\cdot 10^{+0}$  | $4.4\cdot 10^{24}$  | 283 - 551    |
| CUPID-Mo             | $^{100}\mathrm{Mo}$     | completed                     | LSM     | $2.3\cdot 10^1$    | 100                    | 76                            | 91                           | 3.2        | -2,2      | 95                                                     | 15                                                            | $1.7\cdot 10^{-2}$                             | $2.5 \cdot 10^{-1}$ | $1.7\cdot 10^{24}$  | 293-500      |
| CROSS                | $^{100}$ Mo             | construction                  | LSC     | $4.8\cdot 10^1$    | 100                    | 75                            | 90                           | 2.1        | -2,2      | 95                                                     | 31                                                            | $2.5\cdot 10^{-2}$                             | $7.6\cdot 10^{-3}$  | $4.9\cdot 10^{25}$  | 54 - 93      |
| CUPID                | $^{100}$ Mo             | proposed                      | LNGS    | $2.5\cdot 10^3$    | 100                    | 79                            | 90                           | 2.1        | -2,2      | 95                                                     | 1717                                                          | $2.3\cdot 10^{-4}$                             | $4.0\cdot 10^{-1}$  | $1.1\cdot 10^{27}$  | 12-20        |
| AMORE                | $^{100}\mathrm{Mo}$     | proposed                      | Yemilab | $1.1\cdot 10^3$    | 100                    | 82                            | 91                           | 2.1        | -2,2      | 95                                                     | 760                                                           | $2.2\cdot 10^{-4}$                             | $1.7\cdot 10^{-1}$  | $6.7\cdot 10^{26}$  | 15 - 25      |
| Tracking calorimet   | ers (Sec. V             | <b>/I.F</b> )                 |         |                    |                        |                               |                              |            |           |                                                        |                                                               |                                                |                     |                     |              |
| NEMO-3               | <sup>100</sup> Mo       | completed                     | LSM     | $6.9 \cdot 10^1$   | 100                    | 100                           | 11                           | 148        | -1.6, 1.1 | 42                                                     | 3                                                             | $9.3\cdot 10^{-1}$                             | $3.0\cdot 10^{+0}$  | $5.6\cdot 10^{23}$  | 505-866      |
| SuperNEMO-D          | $^{82}$ Se              | construction                  | LSM     | $8.5 \cdot 10^1$   | 100                    | 100                           | 28                           | 83         | -4.2, 2.4 | 64                                                     | 15                                                            | $2.1 \cdot 10^{-2}$                            | $5.0\cdot 10^{-1}$  | $8.6\cdot 10^{24}$  | 201-391      |
| SuperNEMO            | $^{82}$ Se              | proposed                      | LSM     | $1.2\cdot 10^3$    | 100                    | 100                           | 28                           | 72         | -4.1, 2.8 | 54                                                     | 185                                                           | $5.4\cdot 10^{-3}$                             | $9.8\cdot 10^{-1}$  | $7.8\cdot 10^{25}$  | 67-131       |

## Future of double-beta decay search

• Sensitivity goals: Cover  $m_{\beta\beta} \sim 17$  meV (IH)

**\*[cps**/(**FWHM**. **t**. **yr**)] \*\* + KamLAND2-Zen + NEXT-HD

<sup>76</sup>Ge : GERDA + MAJORANA → LEGEND

200 kg in prep. @ LNGS 1000 kg lab. selection LAr veto + mass /det.

 $\begin{array}{ll} \mathsf{BI}^* < 0.6 \ / < 0.1 & \mathsf{BI} \\ T_{1/2}^{0\nu} > 0.9 \ / \ 12 \times 10^{27} \ \mathsf{yr} & T_{1/2}^{0\nu} \\ m_{\beta\beta} < [35 - 73] / [10 - 20] \ \mathsf{meV} & m_{\beta\beta} \end{array}$ 

<sup>100</sup>Mo : CUORE + CUPID-0/Mo → CUPID

Defined isotope - 253 kg cristals Validated light scint. technology Reuse CUORE cryostat

Bl\* < 0.5  $T_{1/2}^{0
u}$  > 1.1 × 10<sup>27</sup> yr meV  $m_{etaeta}$  < [12 – 20] meV xenon vessel  $^{136}$ Xe\*\*: EXO-200 → nEXO anode

mass x25 = 5 tons LXe SNOLAB – fiducial volume Energy resolution 1%

 $egin{aligned} \mathsf{BI*} &< 0.6 \ T_{1/2}^{0
u} &> 9.2 imes 10^{27} ext{ yr} \ m_{etaeta} &< [6-17] ext{ meV} \end{aligned}$ 

 Three major experiment in terms of mass/funding but many other alternative technology under development

## Candidate underground labs

#### • Europe:

- Feasibility studies of LEGEND-1000 at LNGS
- LSC not deep enough
- $\,\circ\,$  Not enough space at LSM

#### • North America:

- Preference for SNOLAB in Canada (SURF not retained)
- Active mine new experimental hall dedicated to double-beta decay



 Large hosting capacity at CJPL experimental hall built for CDEX (dark matter)



## Selection process in the US



#### Sensitivity comparison with other isotopes

#### Strength of the LEGEND-1000 proposal:

- Quasi-background free at full exposure
- No known peaks near  $Q_{\beta\beta}$



#### Strength of the nEXO proposal:

- Exposure (5 t) + fiducialization
- Promising <sup>136</sup>Ba daughter tagging(?)



#### Strength of the CUPID proposal:

- Existing cryogenic infrastructure
- Demonstrated bkg reduction technique w.r.t. CUORE



## **APPEC recommendations**

#### [1910.04688]

#### APPEC : Astroparticle Physics European Consortium Meeting on the 31 octobre 2019 dedicated to double-beta decay

Recommendation 1. The search for neutrinoless double beta decay is a top priority in particle and astroparticle physics.

Recommendation 2. A sustained and enhanced support of the European experimental programme is required to maintain the leadership in the field, exploiting the broad range of expertise and infrastructure and fostering existing and future international collaborations.

Recommendation 3. A multi-isotope program at the highest level of sensitivity should be supported in Europe in order to mitigate the risks and to extend the physics reach of a possible discovery.

Recommendation 4. A programme of R&D should be devised on the path towards the meV scale for the effective Majorana mass parameter.

Recommendation 5. The European underground laboratories should provide the required space and infrastructures for next generation double beta decay experiments and coordinate efforts in screening and prototyping.

## Conclusions

• The neutrino remains a golden channel to probe New Physics despite its low interaction rate

#### • Neutrinoless double beta decay is in an exciting phase!

- > Many highly sensitive experiments have recently delivered results
- > There is a roadmap to increase sensitivities by two order of magnitude on  $T_{1/2}^{0\nu}$ Future projects rely on different isotopes

#### • The community is moving toward ton-scale projects

- with ultra-low background, high energy resolution
- offering many possibility to probe rare events connected to new physics

## Technological risk evaluation

Large gap in exposure (horizontal axis)

= potential unknowns on the experiment functioning / long term robustness / ...

- Large gap on the background (vertical axis)
  - = potential unknowns on the radiopurity / ignored background components / ...



#### Nuclear Matrix Element status



New NSM, IBM and QRPA calculations have been performed in 2020 Ab-initio (first principles) calculations now available for <sup>76</sup>Ge and <sup>82</sup>Se!