

The muon magnetic moment: a precision test shaking the Standard Model

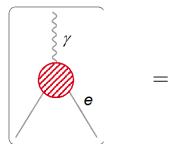
Michel Davier

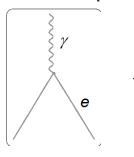
Laboratoire Irène Joliot-Curie (IJCLab) — CNRS/IN2P3 et Université Paris-Saclay

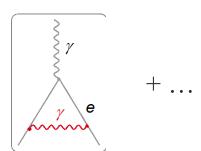
- April 7 2021: announcement of the first result of the Fermilab experiment measuring the muon magnetic anomaly
- Comparison with the theoretical prediction within the Standard Model shows an excess at the level of 4.2 σ , larger than the previous 3.7 σ with respect to the Brookhaven experiment
- In this talk, after a general introduction and some information on the experiment, I will review
 the status of the hadronic vacuum polarization contribution using a dispersion relation based
 on the measured cross sections for e+ e- → hadrons

Work done with Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang

The electron g-2 early history


• Dirac's relativistic theory of the electron (1928) naturally accounted for quantized spin, and described elementary spin-1/2 particles (and their antiparticles). Classical limit \Rightarrow Pauli equation with a magnetic moment:


$$\vec{\mu} = -g_e \frac{e}{2m_e} \vec{S}$$
 with $|g_e| = 2$ is the gyromagnetic factor


• Dirac's prediction was confirmed by Kinsler & Houston in 1934 through studying the Zeeman effect in neon, but a deviation from $g_e=2$ was found by Nafe, Nels & Rabi in 1947 and established with increased precision by Kusch & Foley

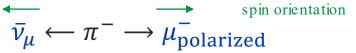
magnetic anomaly
$$a = (g-2)/2 \sim 10^{-3}$$

 Development of quantum electrodynamics (Dyson, Feynman, Schwinger, Tomonaga): Dirac's g = 2 corresponds to the lowest order QED graph

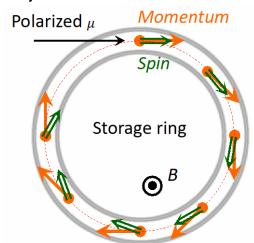
$$a_e^{\text{QED}} = \frac{\alpha}{2\pi} + \dots = 0.001 \ 161 \ \dots$$

The power of precision to discover new physics (here QED quantum fluctuations)

Why measure the muon g-2?


- 3 families of fermions (leptons and quarks) with universal coupling strengths to electroweak interactions
- The 3 charged leptons $I \equiv (e, \mu, \tau)$ differ only by their own leptonic quantum numbers and their masses $m_e = 0.511 \, \text{MeV}$ $m_u = 105.7 \, \text{MeV}$ $m_\tau = 1776.9 \, \text{MeV}$
- e stable, μ and τ are unstable and decay through the weak interaction with lifetimes 2.2 μ s and 390 fs
- sensitivity of a_i to new physics at energy scale Λ goes like m_i^2 / Λ^2
- Muon more sensitive by large factor $(m_{\mu}/m_e)^2 \sim 43000$, but measurement limited by short lifetime
- Measurement for τ lepton not practical at the moment

Key ingredients for measurement: polarized muons and muon spin analysis through decay electrons, both following from maximum P violation in weak interaction


- Muons produced at accelerators in pion decays are polarized
- Angle of energetic decay electrons is correlated with muon spin

Principle of muon g-2 measurement (CERN 1960-80)

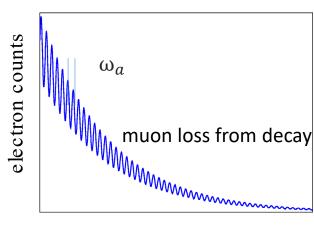
1. Parity violation polarizes muons in pion decay

2. Anomalous frequency proportional to a_{μ}

- Very uniform magnetic field
- Focusing with electrostatic quadrupoles

3. Magic γ to cancel $\beta \times E$ effect:

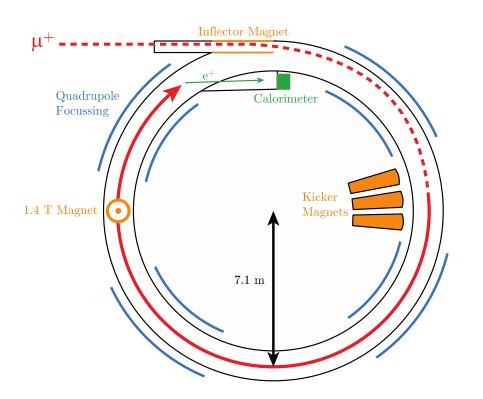
$$\vec{\omega}_{a} = \frac{e}{m_{\mu}c} \left[a_{\mu} \vec{B} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right] \approx \frac{e}{m_{\mu}c} a_{\mu} \vec{B}$$

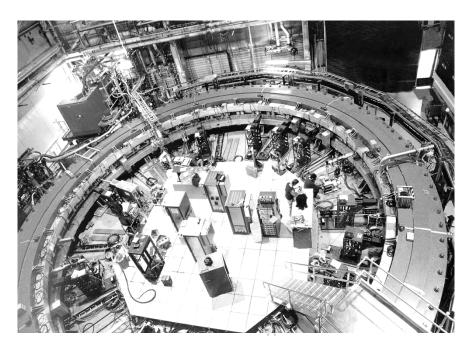

 P_{μ} = 3.09 GeV/c

4. Again parity violation in muon decay

$$\mu_{\text{polarized}}^- \rightarrow e^- + \bar{\nu}_e + \nu_{\mu}$$

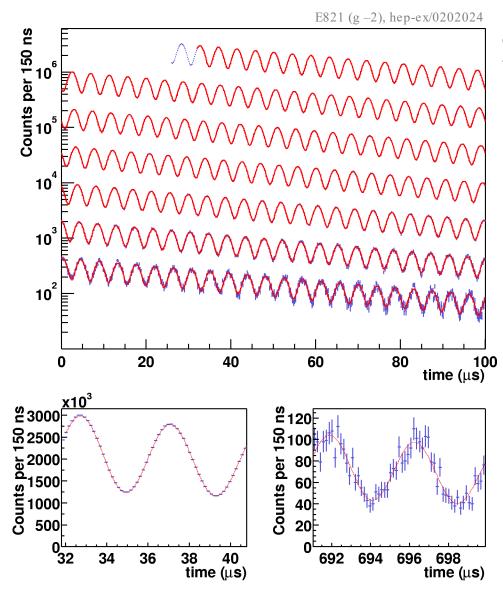
fast electron emitted in direction opposite to muon spin


Double miracle by virtue of P violation!



Time

Muon g-2 measurement (Brookhaven 1990-2006)


- A 24 GeV proton beam (AGS) incident on a target produces large number of pions that decay to muons
- The 3.1 GeV muon beam (relativistically enhanced lifetime of 64 µs) is injected into a 7.1 m radius ring with 1.4 T vertical magnetic field, which produces cyclotron motion matching the ring radius
- Electrostatic focusing of the beam is provided by a series of quadrupole lenses around the ring.

- Decay electrons (correlated with μ spin precession) counted vs. time in calorimeters inside ring ($\rightarrow \omega_a$)
- Precise measurement of ω_a and B allows to extract a_{μ}

Muon g-2 measurement (Brookhaven 1990-2006)

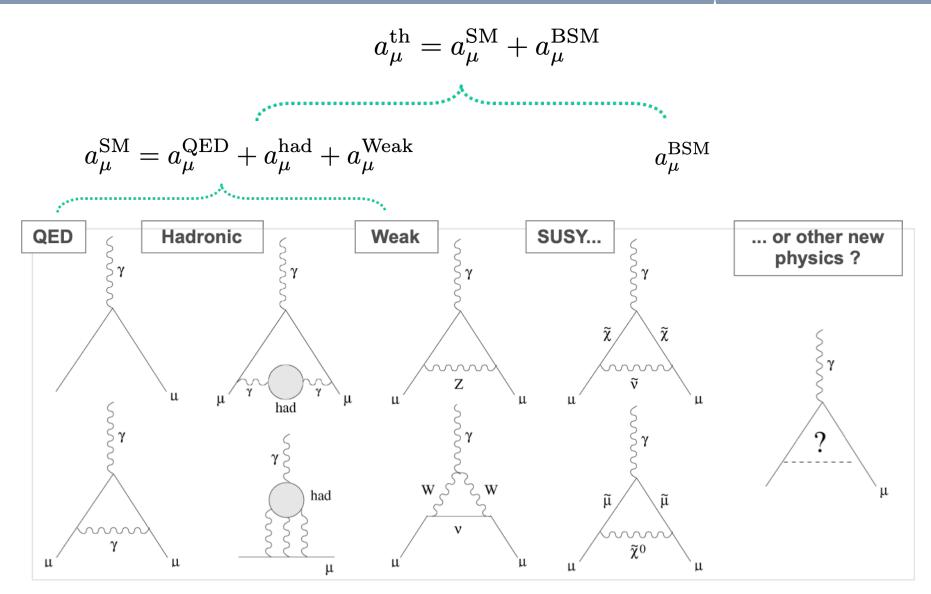
Observed positron rate in successive 100 µs periods ~150 polarisation rotations during measurement period

$$\omega_a \approx \frac{e}{m_\mu c} a_\mu B$$

obtained from time-dependent fit

$$N(t) = N_0 e^{-t/\gamma \tau} [1 - A \cdot \sin(\omega_a t - \phi)]$$

In blue: fit parameters


B field measured with Hall probes with RMN frequency as reference $\Rightarrow a_{\mu}$ obtained as ratio of 2 frequencies (double blind analysis)

Total systematic uncertainty on ω_a : 0.2–0.3 ppm, with largest contributors:

- pileup (~in-time arrival of two low-E electrons)
- muon losses
- coherent betatron oscillation (muon loss and CBO amplitude [frequency: 0.48 MHz, compared to ω_a: 0.23 MHz] are part of fit)
- calorimeter gain changes

$$a_{\mu} = 11\ 659\ 209.1\ (5.4)(3.3)\ \cdot 10^{-10}$$

Theoretical prediction for a_u

Theoretical prediction for a_u: QED

Known to 5 loops, good convergence, diagrams with internal electron loops enhanced:

$$a_{\mu}^{\text{QED}} = \frac{\alpha}{2\pi} + A_2 \left(\frac{\alpha}{\pi}\right)^2 + A_3 \left(\frac{\alpha}{\pi}\right)^3 + A_4 \left(\frac{\alpha}{\pi}\right)^4 + A_5 \left(\frac{\alpha}{\pi}\right)^5$$

 A_2 A_3 known analytically, A_4 A_5 obtained with Monte Carlo techniques, partially checked analytically for A_4 Aoyama, Hayakawa, Kinoshita, Nio (2012-2019)

$$\alpha = 137.035\ 999\ 046\ (27)\ \text{from Cs recoil measurement}\ (\text{Mueller et al.})$$

$$\alpha_{\mu}^{\text{QED}} = 116\ 140\ 973.321\ (23)$$

$$+ 413\ 217.626\ (7)$$

$$+ 30\ 141.902\ (33)$$

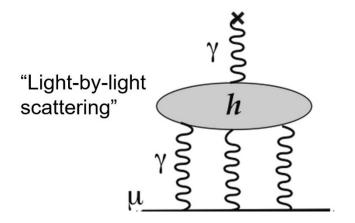
$$+ 381.004\ (17)$$

$$+ 5.078\ (6)$$

$$= 116\ 584\ 718.931\ (104)$$

$$\text{uncertainty dominated by estimate on }\alpha^{6}\ \text{term}$$

Theoretical prediction for a_u: EW, hadronic light-by-light

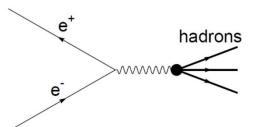

• EW: one-loop + two-loop involving W, Z bosons (little sensitivity to Higgs boson mass)

$$a_{\mu}^{EW} = 153.6 (1.0) \times 10^{-11}$$

shows level of sensitivity of a_{ii} to physics at large mass scales \sim O(0.1 TeV)

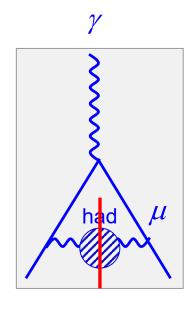
Precision at low energies ⇔ high energy frontier

• Hadronic light-by-light: α^3 contribution not computable by analytical QCD; so far only estimated by phenomenological models using intermediate particles; new approach partly using experimental data (2017); also first results from QCD lattice simulations (2019)


small contribution

$$a_{\mu}^{HLbL} = 94 (19) \times 10^{-11}$$

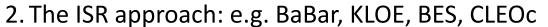
Theoretical prediction for a_{..}: Hadronic Vacuum Polarization


Dominant uncertainty for the theoretical prediction from HVP part which cannot be calculated from QCD (low mass scale), but one can use experimental data on $e^+e^-\rightarrow$ hadrons cross section

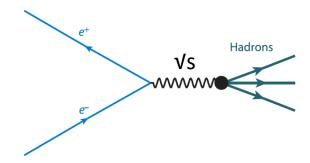

Born:
$$\sigma^{(0)}(s) = \sigma(s)(\alpha/\alpha(s))^2$$

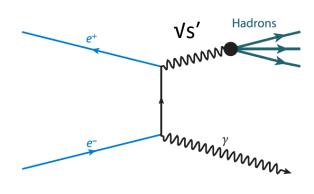
- unitarity
- analyticity

 \Rightarrow dispersion relation


Precise $\sigma(e^+e^-\rightarrow hadrons)$ measurements at low energy are necessary

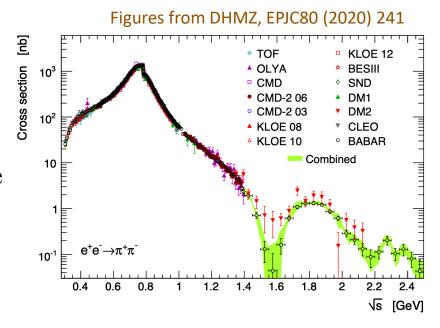
Hadronic Vacuum Polarization (DHMZ group)

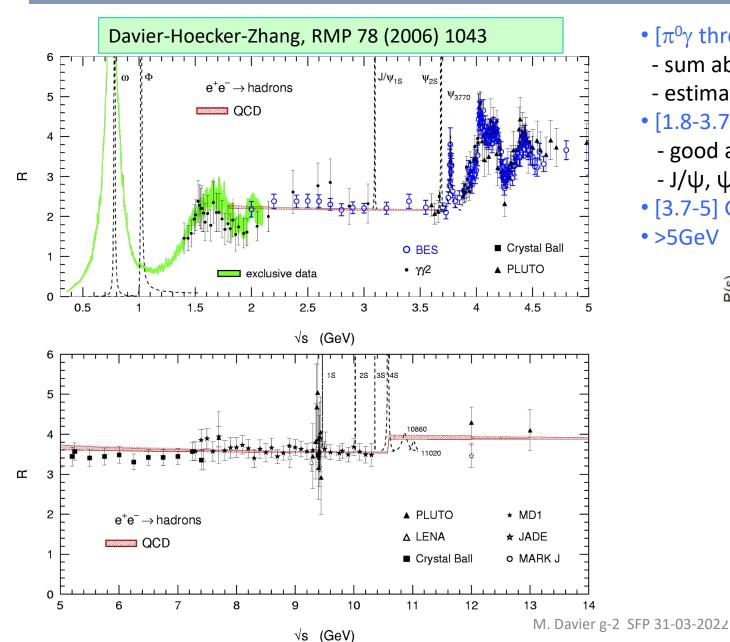

- HVP has been for long and still now the largest contribution to the uncertainty of the SM a_{μ} prediction
- Limited by the accuracy of e+e- experimental data
- DHMZ group (MD, Andreas Hoecker, Bogdan Malaescu, Zhiqing Zhang) involved since 1997
- Result used as reference for the Brookhaven experiment: comparison revealed a deficit in the prediction at \sim 2-3 σ level, hence our motivation to continue this effort toward a more precise prediction
- Main contributions to data treatment
 - > Compilation of existing data for e+e- annihilation to obtain R as a sum of exclusive processes
 - ➤ Robust combination techniques taking into account all correlated uncertainties as function of energy, between exclusive channels, and between experiments
 - > Correct for unmeasured processes using isospin constraints
 - \triangleright Determine energy regions where perturbative QCD calculations are safe (experience with τ at LEP)
- Launched a dedicated program of e+e- cross section measurements using the BABAR detector (Stanford) to get more precise data (2001-2014) with the new Initial State Radiation (ISR) method. A new phase is still underway.
- Same data and techniques used for the running of α (energy) from α (0) to α (M_Z) \Rightarrow prediction for M_{Higgs}


Measurements of $\sigma(e^+e^- \rightarrow hadrons)$

- 1. The scan method: e.g. CMD-2/3, SND at Novosibirsk
 - ➤ Advantages:
 - > Well defined vs
 - ➤ Good energy resolution ~10⁻³Vs
 - ➤ Disadvantages:
 - ➤ Energy gap between two scans
 - ➤ Low luminosity at low energies
 - ➤ Limited vs range of a given experiment

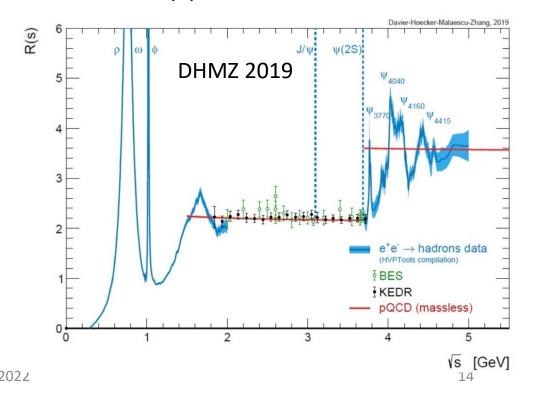
- ➤ Advantages:
 - Continuous cross section measurement over a broad energy range down to threshold
 - ➤ large acceptance for hadrons if ISR detected at large angle
 - $> \sigma(e^+e^- \to hadrons)$ may be measured over $\sigma(e^+e^- \to \mu^+\mu^-)$ thus reducing some syst uncertainties
- ➤ Disadvantages:
 - ightharpoonup Requires high luminosity to compensate higher order in α

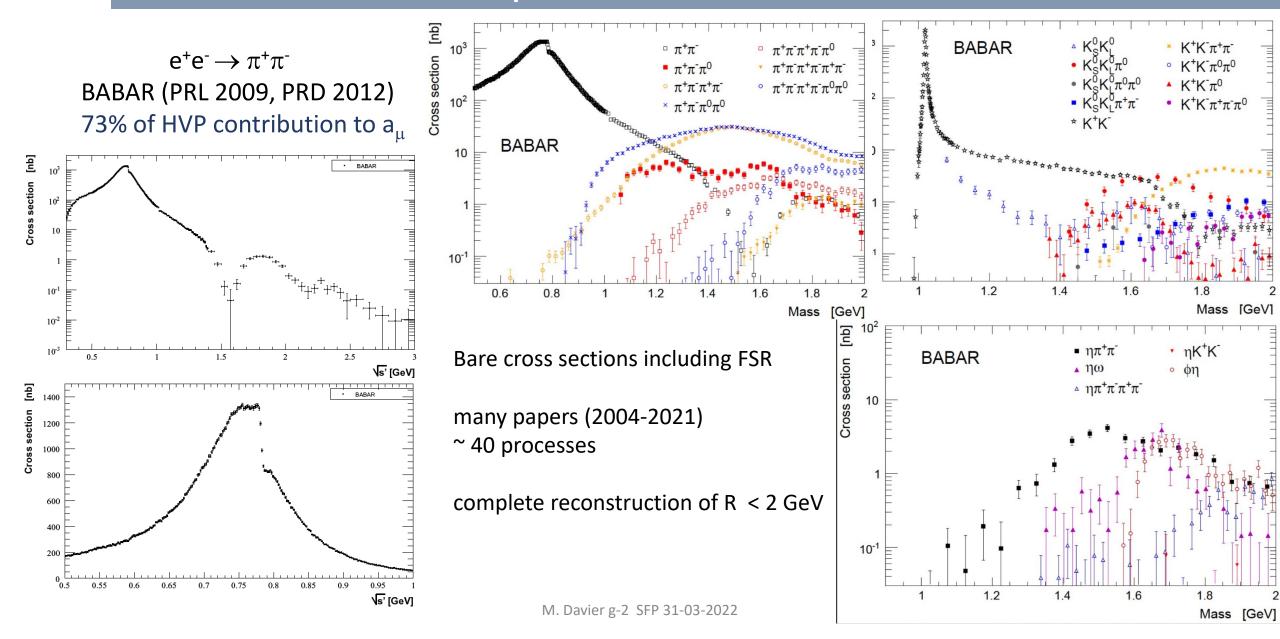



$$s'=(1-x)/s$$

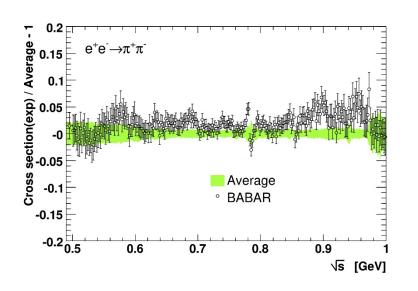
 $x=2E_{\gamma}/\sqrt{s}$

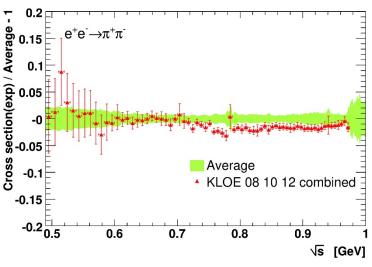
Combining cross section data (HVPTools)

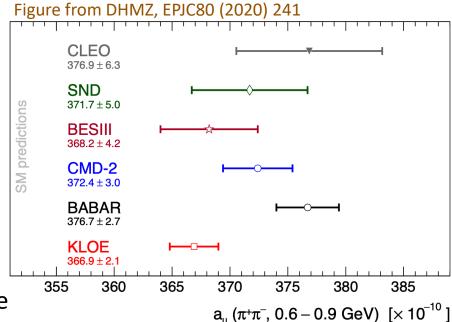

- Combine experimental spectra with arbitrary point spacing / binning Properly propagate uncertainties and correlations
- Between measurements (data points/bins) of a given experiment (covariance matrices and/or detailed split of uncertainties)
- Between experiments (common systematic uncertainties, e.g. VP)
- Between different channels, e.g. luminosity, radiative corrections, some efficiencies
- Linear/quadratic splines to interpolate between the points/bins of each experiment
- Fluctuate data points taking into account correlations and re-do the splines for each (pseudo-)experiment
- Integral(s) evaluated for nominal result and for each set of toy pseudoexperiments; uncertainty of integrals from RMS of results for all toys Pseudo-experiments also used to derive (statistical & systematic)
- covariance matrices of combined cross sections
 - → Integral evaluation


Different energy regions for R(s)

- $[\pi^0 \gamma \text{ threshold-1.8GeV}]$
- sum about $22 \rightarrow 37$ exclusive channels
- estimate unmeasured channels (isospin relations (< 0.1%)
- [1.8-3.7] GeV
 - good agreement between data and 4-loop QCD calculation
 - J/ψ , $\psi(2s)$: Breit-Wigner integral
- [3.7-5] GeV use data
- use 4-loop pQCD calculation • >5GeV




The BaBar complete set of exclusive measurements



Consistency between experimental data

- Latest dispersive evaluations rely on a rather complete set of measurements of $e^+e^- \rightarrow$ hadrons up to 6π , $\eta 4\pi$, KK2 π in all charge configurations, and a few more higher-multiplicity processes
- missing channels in the range [1.5-1.8] GeV are estimated to contribute < 0.1% using isospin symmetry
- discrepancies exist in the K^+K^- channel on the $\phi(1020)$ (CMD-3 vs. CMD-2, SND, BABAR), taken into account
- A more significant discrepancy occurs in the $\pi^+\pi^-$ channel between the 2 most precise results (BABAR and KLOE)
- Taking into account the BABAR/KLOE disagreement in the combination, all experiments are in agreement
 within an enlarged combination uncertainty (0.7%), already a remarkable result given different experimental
 conditions: ISR (10.6 GeV BABAR, ~4 GeV BES CLEOc, 1.02 GeV KLOE), direct scan (CMD-2, SND)

Additional systematic error added because of BABAR-KLOE difference

⇒ degrades uncertainty by 30%

All contributions (DHMZ19)

Channel	$a_{\mu}^{ m had, \ LO}[10^{-10}]$	$\Delta lpha(m_Z^2)[10^{-4}]$
$\frac{-1}{\pi^0 \gamma}$	$\frac{3\mu}{4.29 \pm 0.06 \pm 0.04 \pm 0.07}$	$0.35 \pm 0.00 \pm 0.00 \pm 0.01$
$\eta\gamma$	$0.65 \pm 0.02 \pm 0.01 \pm 0.01$	$0.08 \pm 0.00 \pm 0.00 \pm 0.00$
$\pi^+\pi^-$	$507.80 \pm 0.83 \pm 3.19 \pm 0.60$	$34.49 \pm 0.06 \pm 0.20 \pm 0.04$
$\pi^{+}\pi^{-}\pi^{0}$	$46.20 \pm 0.40 \pm 1.10 \pm 0.86$	$4.60 \pm 0.04 \pm 0.11 \pm 0.08$
$2\pi^+2\pi^-$	$13.68 \pm 0.03 \pm 0.27 \pm 0.14$	$3.58 \pm 0.01 \pm 0.07 \pm 0.03$
$\pi^{+}\pi^{-}2\pi^{0}$	$18.03 \pm 0.06 \pm 0.48 \pm 0.26$	$4.45 \pm 0.02 \pm 0.12 \pm 0.07$
$2\pi^{+}2\pi^{-}\pi^{0} \ (\eta \ { m excl.})$	$0.69 \pm 0.04 \pm 0.06 \pm 0.03$	$0.21 \pm 0.01 \pm 0.02 \pm 0.01$
$\pi^+\pi^-3\pi^0 \ (\eta \text{ excl.})$	$0.49 \pm 0.03 \pm 0.09 \pm 0.00$	$0.15 \pm 0.01 \pm 0.03 \pm 0.00$
$3\pi^+3\pi^-$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$
$2\pi^{+}2\pi^{-}2\pi^{0} \ (\eta \text{ excl.})$	$0.71 \pm 0.06 \pm 0.07 \pm 0.14$	$0.25 \pm 0.02 \pm 0.02 \pm 0.05$
$\pi^+\pi^-4\pi^0$ (η excl., isospin)	$0.08 \pm 0.01 \pm 0.08 \pm 0.00$	$0.03 \pm 0.00 \pm 0.03 \pm 0.00$
$\eta\pi^+\pi^-$	$1.19 \pm 0.02 \pm 0.04 \pm 0.02$	$0.35 \pm 0.01 \pm 0.01 \pm 0.01$
$\eta\omega$	$0.35 \pm 0.01 \pm 0.02 \pm 0.01$	$0.11 \pm 0.00 \pm 0.01 \pm 0.00$
$\eta \pi^+ \pi^- \pi^0 (\text{non-}\omega, \phi)$	$0.34 \pm 0.03 \pm 0.03 \pm 0.04$	$0.12 \pm 0.01 \pm 0.01 \pm 0.01$
$\eta 2\pi^+ 2\pi^-$	$0.02 \pm 0.01 \pm 0.00 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega\eta\pi^0$	$0.06 \pm 0.01 \pm 0.01 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega\pi^0 \; (\omega o\pi^0\gamma)$	$0.94 \pm 0.01 \pm 0.03 \pm 0.00$	$0.20 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega(\pi\pi)^0 \ (\omega \to \pi^0 \gamma)$	$0.07 \pm 0.00 \pm 0.00 \pm 0.00$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega \left(ext{non-} 3\pi, \pi \gamma, \eta \gamma \right)$	$0.04 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$
K^+K^-	$23.08 \pm 0.20 \pm 0.33 \pm 0.21$	$3.35 \pm 0.03 \pm 0.05 \pm 0.03$
K_SK_L	$12.82 \pm 0.06 \pm 0.18 \pm 0.15$	$1.74 \pm 0.01 \pm 0.03 \pm 0.02$
$\phi \ (\underline{\mathrm{non-}} K\overline{K}, 3\pi, \pi\gamma, \eta\gamma)$	$0.05 \pm 0.00 \pm 0.00 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$K\overline{K}\pi$	$2.45 \pm 0.05 \pm 0.10 \pm 0.06$	$0.78 \pm 0.02 \pm 0.03 \pm 0.02$
$K\overline{K}2\pi$	$0.85 \pm 0.02 \pm 0.05 \pm 0.01$	$0.30 \pm 0.01 \pm 0.02 \pm 0.00$
$K\overline{K}3\pi$ (estimate)	$-0.02 \pm 0.01 \pm 0.01 \pm 0.00$	$-0.01 \pm 0.00 \pm 0.00 \pm 0.00$
$\eta\phi$	$0.33 \pm 0.01 \pm 0.01 \pm 0.00$	$0.11 \pm 0.00 \pm 0.00 \pm 0.00$
$\eta K\overline{K} \; ext{(non-}\phi)$	$0.01 \pm 0.01 \pm 0.01 \pm 0.00$	$0.00 \pm 0.00 \pm 0.01 \pm 0.00$
$\omega K\overline{K} \ (\omega o \pi^0 \gamma)$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$	$0.00 \pm 0.00 \pm 0.00 \pm 0.00$
$\omega 3\pi \ (\omega o \pi^0 \gamma)$	$0.06 \pm 0.01 \pm 0.01 \pm 0.01$	$0.02 \pm 0.00 \pm 0.00 \pm 0.00$
$7\pi \ (3\pi^{+}3\pi^{-}\pi^{0} + \text{estimate})$	$0.02 \pm 0.00 \pm 0.01 \pm 0.00$	$0.01 \pm 0.00 \pm 0.00 \pm 0.00$
J/ψ (BW integral)	6.28 ± 0.07	7.09 ± 0.08
$\psi(2S) \; (\mathrm{BW\; integral})$	1.57 ± 0.03	2.50 ± 0.04
R data [3.7 - 5.0] GeV	$7.29 \pm 0.05 \pm 0.30 \pm 0.00$	$15.79 \pm 0.12 \pm 0.66 \pm 0.00$
$R_{\rm QCD} [1.8 - 3.7 \text{ GeV}]_{uds}$	$33.45 \pm 0.28 \pm 0.65_{\mathrm{dual}}$	$24.27 \pm 0.18 \pm 0.28_{ ext{dual}}$
$R_{\rm QCD} \left[5.0 - 9.3 \text{ GeV} \right]_{udsc}$	6.86 ± 0.04	34.89 ± 0.17
$R_{\rm QCD} [9.3 - 12.0 \text{ GeV}]_{udscb}$	1.21 ± 0.01	15.56 ± 0.04
$R_{\rm QCD} [12.0 - 40.0 \text{ GeV}]_{udscb}$	1.64 ± 0.00	77.94 ± 0.12
$R_{\rm QCD} [> 40.0 \text{ GeV}]_{udscb}$	0.16 ± 0.00	42.70 ± 0.06
$R_{\rm QCD} [> 40.0 \text{ GeV}]_t$	0.00 ± 0.00	-0.72 ± 0.01
Sum	$693.9 \pm 1.0 \pm 3.4 \pm 1.6 \pm 0.1_{\psi} \pm 0.7_{\text{QCD}}$	$275.42 \pm 0.15 \pm 0.72 \pm 0.23 \pm 0.09_{\psi} \pm 0.55_{\text{QCD}}$
	M. Davier g-2	SFP 31-03-2022

40 exclusive channels (<1.8 GeV) evaluated

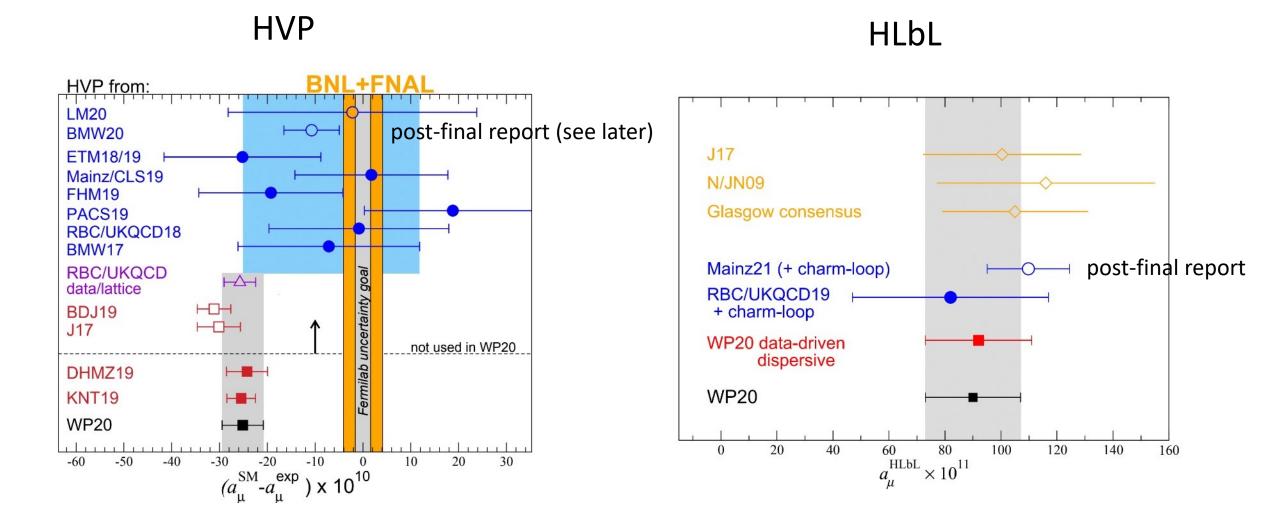
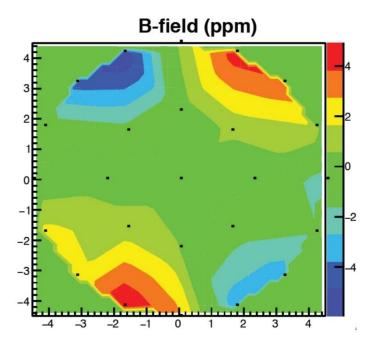
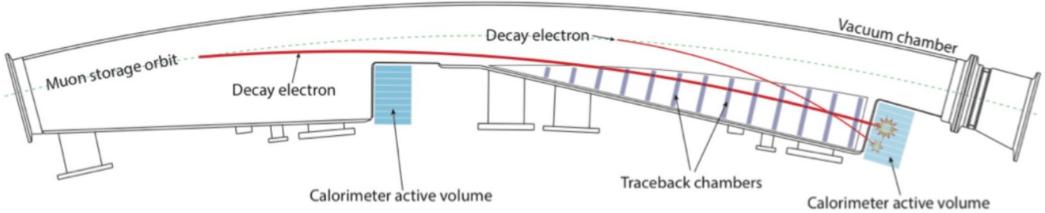

Estimation for missing modes based on isospin constraints becomes negligible (0.016%)

Table taken from DHMZ, EPJC80 (2020) 241


The g-2 theory initiative (2017-2020)

- By 2012, prediction using more precise e+e- data confirmed the discrepancy with the Brookhaven measurement, reaching $^{\sim}$ 3.5 σ
- In view of forthcoming results from the new g-2 direct experiment at Fermilab, a concerted effort was organized to try to produce the most reliable prediction ahead of time (blind to the new result)
- Organized 6 workshops followed by ~ 130 physicists (many lattice QCD theorists)
- Progress in hadronic LbL calculations with phenomenological and lattice methods, uncertainty reduced
- For HVP
 - > lattice groups very active, but could not produce a reliable and competitive result
 - ➤ the dispersive approach based on data was adopted: results of 2 groups used (DHMZ and KNT) with the DHMZ conservative approach of estimating uncertainties prevailing
- Comprehensive report (166 pages) ready early 2020 and published in Physics Reports, well before the Fermilab release

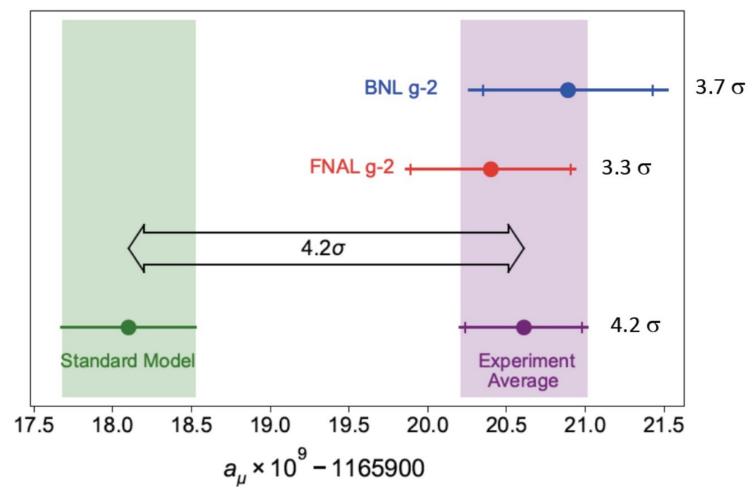

The g-2 theory initiative prediction (WP2020)

The muon g-2 Fermilab experiment: a few features

- Large SC magnet shipped from BNL to Fermilab
- B-field uniformity after careful magnet shimming
- Checked every 3 days with special trolley with probes
- Large number of fixed probes to interpolate shifts
- Real-time reconstruction of muon beam position/shape to obtain B-field as seen by the muons
- Possible using tracking system of electron detectors
- Calorimeters with PbF2 crystals read-out by SiPM's (reduce pile-up)

The muon g-2 Fermilab experiment: correcting systematic effects

- Large number of systematic studies to establish corrections and to estimate uncertainties
- Beam distortions/oscillations
- Muon losses
- E-field residual effect
- Different methods for ω_a determination
- B-field (ω_p)
- Several groups for each topics
- Double unblinding for ω_a and ω_p with secret offsets for clock frequencies
- precision dominated by statistics
- Guarantees progress for future analyses (so far only 6% of total data)

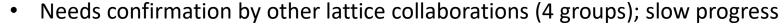

Quantity	Correction Terms	Uncertainty
	(ppb)	(ppb)
ω_a (statistical)	_	434
ω_a (systematic)	_	56
C_e	489	53
C_p	180	13
C_{ml}	-11	5
C_{pa}	-158	75
$f_{calib}\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\rangle$	_	56
B_q	-17	92
B_k	-27	37
$\mu_p'(34.7^\circ)/\mu_e$	_	10
m_{μ}/m_e	_	22
$g_e/2$	_	0
Total	_	462

434 ppb stat ⊕ 157 ppb syst error

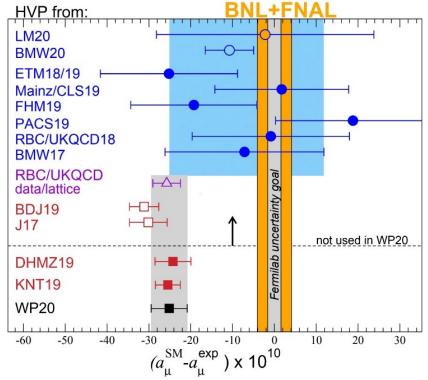
The muon g-2 Fermilab experiment: the result

$$a_{ii}$$
(Fermilab) = 116 592 040 (54) × 10⁻¹¹

- Agreement with Brookhaven value
- Precision comparable
- Excess / SM prediction increased to 4.2σ
- Caution about significance:
 - > statistics-dominated measurement
 - prediction uncertainty limited by systematic effects (not Gaussian)
- Nevertheless, large discrepancy (the largest so far between measurement and SM anywhere)



60 years of muon g-2 measurements and theory predictions


Experiment	Beam	Measurement	$\delta \mathrm{a}_\mu/\mathrm{a}_\mu$	Required th. terms
Columbia-Nevis (57)	$\mu^{\scriptscriptstyle +}$	g=2.00±0.10		g=2
Columbia-Nevis (59)	$\mu^{\scriptscriptstyle +}$	0.001 13(+16)(-12)	12.4%	α/π
CERN 1 (61)	$\mu^{\scriptscriptstyle +}$	0.001 145(22)	1.9%	α/π
CERN 1 (62)	$\mu^{\scriptscriptstyle +}$	0.001 162(5)	0.43%	$(\alpha/\pi)^2$
CERN 2 (68)	$\mu^{\scriptscriptstyle +}$	0.001 166 16(31)	265 ppm	$(\alpha/\pi)^3$
CERN 3 (75)	μ^{\pm}	0.001 165 895(27)	23 ppm	$(\alpha/\pi)^3$ + had
CERN 3 (79)	μ^{\pm}	0.001 165 911(11)	7.3 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (00)	$\mu^{\scriptscriptstyle +}$	0.001 165 919 1(59)	5 ppm	$(\alpha/\pi)^3$ + had
BNL E821 (01)	$\mu^{\scriptscriptstyle +}$	0.001 165 920 2(16)	1.3 ppm	$(\alpha/\pi)^4$ + had + weak
BNL E821 (02)	$\mu^{\scriptscriptstyle +}$	0.001 165 920 3(8)	0.7 ppm	$(\alpha/\pi)^4 + \text{had} + \text{weak} + ?$
BNL E821 (04)	μ^-	0.001 165 921 4(8)(3)	0.7 ppm	$(\alpha/\pi)^4$ + had + weak +?
FNAL Run1 (21)	μ^+	0.001 165 920 40(54)	0.46 ppm	$(\alpha/\pi)^4 + \text{had} + \text{weak} + ?$

A controversy on HVP

- BMW lattice collaboration preprint posted on arxiv early in 2020
- Statistics x10 compared to other groups (huge computing power)
- Claimed systematic uncertainty (dominant) also much smaller
- Central value much closer to the g-2 measurement
- Result scrutinized during one year (special workshop organized)
- Criticism expressed (precision), but no fundamental flaw discovered so far
- Small changes made in 2nd and 3rd versions
- Paper finally published in Nature with aggressive publicity
- New method at this level of precision; lack of maturity/dispersive approach
 - ➤ QCD solved numerically on a discretized space-time of finite volume (up to 11 fm³) and small spacing (impressive, massive computing))
 - > Extrapolation to the continuum is one of the issues concerning systematic biases and error estimate

- Clear discrepancy between cross section for e+e- → hadrons and BMW result
- DHMZ is collaborating with BMW to localize the energy region where the differences with data-driven results occur
- BMW result impact on the EW fit investigated: Hoferichter-Crivellin, Keshavarzi et al, Malaescu-Schott 2021

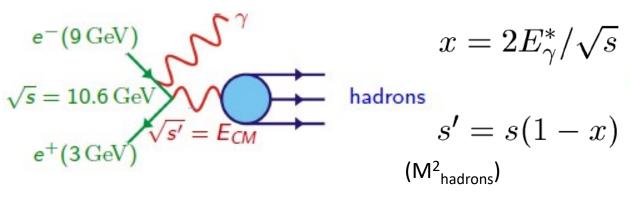
What new physics could produce this excess?

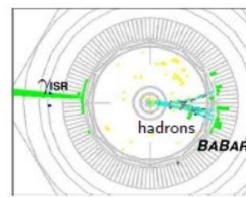
- Presently the confrontation theory/experiment indicates a missing contribution in the Standard Model at more than 4 σ
- The excess, Δa_{μ} = 251 (59) \times 10⁻¹¹, is comparable to the electroweak contribution of W and Z bosons (mass ~100 GeV) Δa_{μ}^{EW} = 153.6 (1.0) \times 10⁻¹¹
- Depending on possible enhancements due to the specific new interaction, masses for the new particles could be in the 0.1-1 TeV range
- Exactly what was expected for minimal supersymmetry (SUSY), enhancement given here by a $tan \beta$ factor
- This simple scenario is almost ruled out by negative searches of SUSY-particles at LHC. Not completely?
- Another possibility is a relatively low mass scalar boson or a dark photon interacting weakly, but this is also largely ruled out by direct searches
- Other, more contrived, models are considered.... BSM theorists are active...

Summary and perspectives

- New measurement of the muon magnetic anomaly released at Fermilab
- Result in agreement with previous Brookhaven experiment
- A large effort was devoted to produce a reliable and conservative theoretical prediction within the Standard Model
- The Hadronic Vacuum Polarization contribution plays a very important role in the value and accuracy of the prediction
- The DHMZ group at Orsay has more than 20 years of experience using the mature dispersive approach based on experimental data on e+e- cross sections measured with innovative methods
- Presently the confrontation theory/experiment indicates a missing contribution in the Standard Model at 4.2 σ
- This conclusion is challenged by an alternative approach using QCD on a lattice which needs
 confirmation by other groups before concluding. For the moment one should stay with the well-tested
 standard approach
- Prospects for improving the direct measurement at Fermilab look good (reduction of uncertainty by a factor of 4 over the next 4 years)
- New precise e+e- measurements underway (CMD-3, BaBar independent/blinded, BESIII, BelleII)
- >2027: a new experiment is under preparation at JPARC in Japan using a completely different approach, thus allowing to crosscheck the traditional method

Backup slides

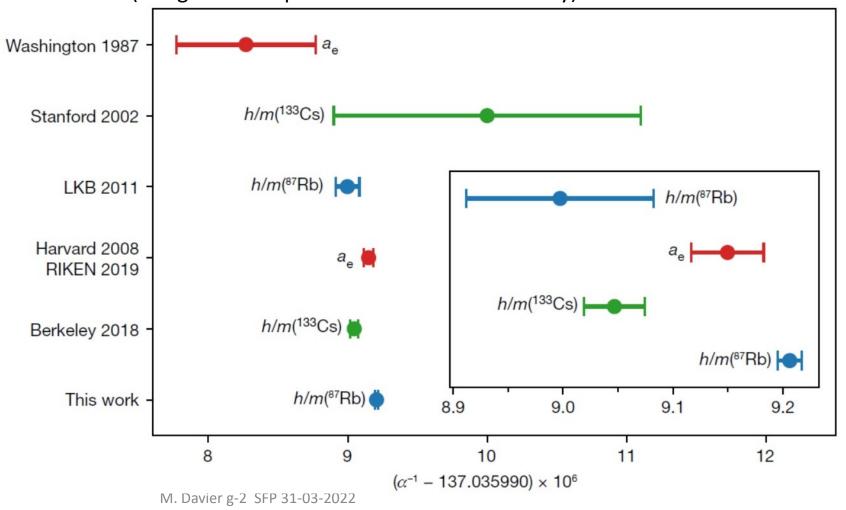

List of DHMZ publications


- 1. ADH 1998, Eur.Phys.J.C 2 (1998) 123 [366 citations*]
- 2. DH 1998, Phys.Lett.B 419 (1998) 419 [223 citations]
- 3. DH 1998, Phys.Lett.B 435 (1998) 427 [294 citations]
- 4. DEHZ 2003, Eur.Phys.J.C 27 (2003) 497 [432 citations]
- 5. DEHZ 2003, Eur.Phys.J.C 31 (2003) 503 [498 citations]
- 6. DHMZ+ 2010, Eur.Phys.J.C 66 (2010) 127 [161 citations]
- 7. DHMYZ 2010, Eur.Phys.J.C 66 (2010) 1 [209 citations]
- 8. DHMZ 2011, Eur.Phys.J.C 71 (2011) 1515 [918 citations]
- 9. DHMZ 2017, Eur.Phys.J.C 77 (2017) 827 [394 citations]
- 10. DHMZ 2019, Eur.Phys.J.C 80 (2020) 241 [342 citations]
- 11. Theory initiative WP 2020, Phys.Rept. 887 (2020) 1 [570 citations]
 - → Total number of citations: ~4400

^{*} Status of March 2022

The ISR method at BABAR

BABAR, operating on the high-luminosity asymmetric PEP II e+e- collider, was designed to study CP violation in the B-antiB system and led to the validation of the Cabibbo-Kobayashi-Maskawa matrix. The ISR program was a powerful by-product



- High energy (E^*_{γ} >3 GeV) detected at large angle
- Event topology: ISR photon back-to-back to hadrons → high acceptance
- Final state can be hadronic or leptonic (QED)
 - $\rightarrow \mu^+\mu^-\gamma(\gamma)$ to get ISR luminosity
- Continuous measurement from threshold to 3-5 GeV
 - →reduces systematic uncertainties compared to multiple data sets with different colliders and detectors

Status on electron anomalous magnetic moment

- a_e completely dominated by QED
- Very precise measurements from Gabrielse's group at Harvard
- situation confused
- LKB latest α determination (disagrees with previous result from Berkeley)

Role of BABAR/KLOE discrepancy in the WP-DISP/BMW21 difference

• Comparing 10^{10} x $a_{\mu}^{LO had}$ results:

```
BMW21
                    707.5 \pm 2.3 \pm 5.0  (5.5)
                                                          0.78%
                     694.0 \pm 1.0 \pm 2.5 \pm 0.7 \pm 2.8 (4.0) 0.58%
DHM719 all
                                                                     2.0\,\sigma
                                        QCD BABAR-KLOE
DHMZ19 –KLOE
                     696.8 \pm (3.1)
                                                           0.44%
                                                                     1.7 \sigma
DHMZ19 -BABAR 691.2 \pm (3.1)
                                                                     2.6 \,\sigma
                                                           0.44%
WP20 all
                     693.1 \pm 2.8 \pm 0.7 \pm 2.8 (4.0)
                                                           0.58%
                                                                     2.1\,\sigma
(merging DHMZ-KNT-CHKS) exp QCD BABAR-KLOE
```

- BABAR/KLOE discrepancy results in a 30% loss in precision for HVP
- It is also substantial (5.6) compared to the BMW21-WP20 difference (14.4)
- It is mandatory that all the new e+e- analyses (BABAR, Bellell, BESIII, CMD-3) be done at a precision level < 0.5% with a demonstrably strict BLIND approach.
- KLOE pushing up the discrepancy with BNL/Fermilab
- Removing KLOE does not change the significance of the deviation (22.3+-5.3 instead of 25.1+-5.9, 4.2σ)

 M. Davier g-2 SFP 31-03-2022