Highlights of LHC, ATLAS, CMS and LHCb upgrades

Séminaire thématique GT01: « Physique des particules » 12 - 13 Mars 2020, IP2I Lyon D. Contardo - IP2I CNRS/IN2P3

LHC luminosity planning (ATLAS & CMS): Dec. 2019 update

* Luminosity leveling since 2017 - accelerator performance exceeds ability of experiments to cope with collision pile-up average $\mu \simeq 40$ up to 60 in Run 2

HL-LHC Upgrades: $L_{peak} = [n_b N_b^2 f_{rev} / 4\pi \beta^* \epsilon_n] \times R \simeq 1.5 \times 10^{35} (Hz/cm^2)^*$

- During LS2
 - LHC Injection Upgrade (LIU): increase intensity (N_b x 2) & brightness (Nb/ε_n), reliability and availability
 - Linac 2 @ 50 MeV \rightarrow Linac 4 @ 160 MeV with H⁻ acceleration
 - PSB 1.4 \rightarrow 2 GeV, H⁻ charge injection exchange to p
 - SPS new 200 MHz RF power system
 - First 4 x 5.5 m Nb/Sn magnets (dipoles) at 11 T (gain space for beam loss collimation)
 - Civil engineering**: pits and service caverns for new super conducting links toward magnets

• During LS3

- Interaction Point upgrades**: increase beam focus β* & tune overlap R
 - 100 magnets of 11 types in matching region around IPs: focusing
 - New quadrupoles triplets: 12 Nb/Sn magnets at 12 T
 - "Crab" Cavities : tilt beams for luminosity levelling at 7.5 x 10³⁴ Hz/cm²
 - 4 cavities on each side of IPs
 - New collimators for machine protection
 - 1/2 replaced with new material (60) and 15 to 20 new ones

3

* Before levelling ** At ATLAS and CMS

ATLAS Upgrades - rates, radiation tolerance & pile-up

- Pixel: Module production (IJCLab, IRFU, LPNHE), integration of ladders (CPPM, LAPP, LPSC)
- LAr calorimeter: FE and calibration ASIC (OMEGA), FE ASIC and board tests (IJCLab), calibration board (LAPP), BE boards and firmware (CPPM, LAPP)
- Tile Calorimeter: Production of FE ASIC, HV for PMTs and laser monitoring (LPC)
- High Granularity Timing Detector: ASIC FE (OMEGA), Test ASIC and Hybrids (IJCLab, OMEGA, LPC), beam test with sensors (IJClab, LPNHE), module assembly (LPNHE, IJClab), cooling and mechanical structure (IJCLab)
- New Small Wheels: Production of 32 chambers (half and the largest 2m) (IRFU)

CMS Upgrades - rates, radiation tolerance & pile-up

L1-Trigger/HLT/DAQ (L1 TDR Q1 2020, HLT/DAQ TDR Q2 2021) https://cds.cern.ch/record/2283192 https://cds.cern.ch/record/2283193

- Tracks in L1-Trigger at 40 MHz
- PFlow-like, 750 kHz output
- HLT output 7.5 kHz

High Granularity Calorimeter Endcap https://cds.cern.ch/record/2293646

- 3D showers and precise timing
- Si, Scint+SiPM in Pb-W/SS

Tracker https://cds.cern.ch/record/2272264

- Si-Strip & Pixels increased granularity
- Design for tracking in L1-Trigger
- Extended coverage to $n \simeq 3.8c$

- Barrel layer: Crystals + SiPMs
- Endcap layer: Low Gain Avalanche Diodes

Barrel Calorimeters https://cds.cern.ch/record/2283187

• ECAL crystal granularity readout at 40 MHz with precise timing for e/y at 30 GeV

5

ECAL and HCAL new Back-End boards

Muon systems https://cds.cern.ch/record/2283189

- DT & CSC new FE/BE readout
- RPC link -board
- New GEM/RPC 1.6 < n < 2.4
- Extended coverage to $n \simeq 3$

Beam Radiation Instr. and Luminosity, **Common Systems and Infrastructure** https://cds.cern.ch/record/002706512 **Precision Proton Spectrometer** Eol in preparation

- IPHC: assembly of outer barrel ladders and production of support wheel, DAQ system for outer and inner tracker, system test CYRCé beam line
- IP2I: production of endcaps support dees, integration 1/2 of short dees, FE concentrator ASIC TSMC 65 nm, RPC PCB & FE readout boards •
- LLR: production of HGC cassette plates, system/beam tests, trigger system firmware and software •
- OMEGA: HGCROC Frontend ASIC in TSMC 130 nm, Muon RPC PETIROC ASIC in AMS 350 nm •
- IRFU: TDC, PLL of HGCROC, ECAL analog FE ASIC 130 nm, clock distribution for timing (MTD fanout ASIC TSMC 130nm, ECAL, HGC), ECAL laser monitoring

MIP Timing Detector https://cds.cern.ch/record/2296612

LHCb Upgrades - rates, radiation tolerance & pile-up

LS2 upgrade: L = 2 x 10^{33} Hz/cm² ($\mu \simeq 5$) - 50 fb⁻¹ integrated by LS4 upgrade*: L = 2 x 10^{34} Hz/cm² ($\mu \simeq 50$) toward 300 fb⁻¹

• Calorimeters: FE boards and controllers (IJCLab), microcode (firmware) of readout boards (LAPP), removal of SPS/PS, mechanics to replace inner calo. modules

• Scintillating Fibers Tracker: FE ASIC and boards (LPC), microcode (firmware) of readout boards (LPNHE), integration and cooling of boards (LPC)

• DAQ system: readout boards (CPPM), microcode (firmware) and framework developments (LAPP, CPPM), Real Time Analyses system (LPNHE)

* Physics case <u>https://cds.cern.ch/record/2320509</u> reviewed by LHCC and CERN RB recommendation for framework TDR in 2021 and approval process

New paradigms: tracking systems

- New technologies
 - Si-sensors: n-in-p (all exp.) & 3D inner pixel layer (ATLAS-CMS), thinner, granularity x 4 to 6
 - Front-End ASIC: TSMC 65 nm (Pixels, data transmission) increase radiation tolerance and lower power consumption
 - Material budget: light materials, CO_2 cooling, micro-channel in LHCb, DC/DC powering (CMS tracker weight $\simeq 1/2$)
 - LHCb outer tracker: Scintillating fibers, with SiPM photosensors at -40°
- Design optimizations
 - ATLAS: all Si-tracker with 5 barrel pixel layers
 - CMS: concept for readout of tracks with $p_T\gtrsim 2$ GeV at 40 MHz for L1 trigger
 - ATLAS and CMS: less layer inclined geometries in transition regions, pixel coverage extension to $\eta \simeq 4$
 - LHCb: VELO with pixel sensors very similar to ATLAS and CMS already in LS2 at 4.5 mm from beam in vacuum

New paradigms: tracking systems

Radiation and Interaction length improvements

New paradigms: High Granularity Calorimeter in CMS endcaps

CALICE + PFlow concept used for pile-up mitigation in $e/\gamma/\tau/Jet$ ID and in HT and MET*

- Design optimization
 - Electromagnetic (CE-E) 28 layers Si-sensors with W/Pb absorber (26 X_0 1.7 λ)
 - Hadronic (CE-H) 22 layers: 8 Si and 14 mixed Si/Scintillating tuiles + SiPMs in Stainless Steel absorber (9 $\lambda)$
- Technologies
 - First use of 8" Si-sensors (n-in-p)
 - SiPM photosensors for direct scintillator tile readout
 - Very complex readout ASIC with 50 ps time precision
 - Engineering challenges compactness, cooling, weight...

* Also allows energy compensation for hadron energy resolution

Silicium - scintillateur + SiPMs limit defined by radiation tolerance

Particle Flow (confusion terr

Calice

400

300

Ein/GeV

500m² Scint. tiles

Calorimeter Only (ILD) 50 % (\E(GeV) ⊕ 3.0 %

60/Ejet [%]

CMS HGC

253 tonnes, total ~150 kW @-30C

New paradigms: precise ToF MIP

MIP precise Time of Flight to recover track purity in hard collision vertices to fully profit from luminosity potential* improves all object reconstruction, particularly beneficial to reject fake jets in forward region and to improve missing transverse energy resolution

- ATLAS HGTD in more critical region $2.4 < \eta < 4.0$
- CMS hermetic up to $\eta = 3$

 \simeq 20% to 40% luminosity gain in barrel - forward

* Luminosity levelling is tunable

New paradigms: precise ToF MIP

30 (40) ps time resolution before (after) irradiation in ATLAS and CMS New technologies LYSO crystals and Low Gain Avalanche Diodes^{*}, ASICs(clock distribution) resolutions \simeq 20(10) ps

ATLAS High Granularity Timing Detector

Two double sided layers (75 mm) covering $2.4 < \eta < 4.0$

- 2(3) hits per track for R >(<) 30 cm
- LGADs 15 x15 array of 1.3 x 1.3 mm² pixels
- 6.3 m², 3.54 Mch

CMS MIP Timing Detector**

Barrel layer in Tracker volume (28 mm)

- Lyso crystal bars 56 x 3 x3 mm², \simeq 350 kchannels, 40 m²
- Readout at both ends with 2 SiPM 3 x 3 mm²,
 Endcap 2 layers in front of Calo. Endcap (42 mm)
- LGAD 1.3 x 1,3 mm² pads, ≃ 4 Mch, 12 m²

* Also foreseen for LHCb tracking upgrade in LS4, ** provides good ID for low momentum range $\pi/K/p$

New paradigms: precision ToF showers

Exploit fast signal development in regular Silicon-sensors & Scintillating devices together high S/N in calorimeter showers to further mitigate pile-up effects for neutrals (γ and h₀)

LHCb foresees precise ToF in scintillating device ECAL upgrade in LS4

New paradigms: precision ToF of Cerenkov light for PID

Time of Reflected Cerenkov Light Rich (TORCH) for LHCb upgrade in LS4 for low momentum ID*

Wall of 18 elements in front of RICH2

- Quartz bar radiator and focusing on MCP-PMT
 - Target id in the range 2 -10 GeV combining Cherenkov angle and TOF measurements with $\sigma(\text{ToF}) \simeq 15 \text{ ps}$, ($\simeq 70 \text{ ps SPTR } \& \simeq 30 \text{ y/track}$)
 - MCP demonstrated to achieve \simeq 35 ps
 - TORCH ½ full size prototype tested in 5-8 Gev π/p beam achieved SPTR of \simeq 90 ps

* A similar concept w/o expansion volume (ToP) in Belle-II

New paradigms: muon systems

Enhancement of forward region for rates and trigger issues, including capability to for LLPs displaced or late vertices (DT and RPC resolution improved to respectively 4 - 2 ns in CMS)

- Small Wheels
 - Small Thin Gap (2.8 mm) Chambers, shorter strips 2 cm to 3.2 mm, 3 mm pitch, $\sigma \simeq 50 \ \mu$ m, up to 2 x 1.2 m²
 - Resistive strip Micro-Megas (0.5 mm pitch), $\sigma \simeq 80 \ \mu m$, largest module 2 x 2.3 m² made of 5 PCBs, Ar:CO2 (93:7)
- Small Monitoring Drift Tubes
 - Reduced Φ 30 mm (200 Hz/cm²) to 15 mm (2 kHz/cm²), wires 50 μ m, $\sigma \simeq$ 100 μ m, L = 1.6 m, Ar:CO2(93:7)

- New GEM stations and extended coverage to $\eta \simeq 3$
 - Triple GEM design, H = 1.8 m x W = 1.2 m wedges with 4 foils, PCB radial strips, pitch 0.7 mm to 1.6 mm, $\sigma \simeq 200$ to 450 μ m
 - Single mask foil photolithography, stretching mechanism
 - Up to > 1 MHz/cm², time resolution O(10ns),
- New multigap RPC stations
 - Low- ρ Bakelite 1-3 10⁶ Ω .cm, thin gap & electrode 2 \rightarrow 1.4 mm, Φ pitch 1.3° to 1.2°, up to few kHz/cm², $\sigma \simeq 0.3(2)$ cm \perp (//)
 - FE 2 strip-ends readout with 100 ps for $r(\eta)$ -coordinate
 - Track time resolution $\simeq 2$ ns

New paradigms: Trigger and DAQ

- Technologies:
 - Generic boards to ease DAQ integration, use interposers to adapt FPGA grade for cost(CPU vs #links (up to 28 Gb/s))
 - New firmware programming technique (High Level Synthesis), sophisticated algorithms \simeq HLT
 - Use of GPUs at computing level

Outlook

- To keep-up with the HL-LHC luminosity capability and the radiation conditions is a challenge for detectors
 - Several new techniques implemented in Phase-2 upgrades but we are not in a performance asymptote
- LHCb upgrades in LS2 already implement some features of ATLAS and CMS Phase-2 could also be a playfield for future detectors with LS4 upgrade
- ATLAS and CMS designs are mostly completed and we are soon entering production stage for Phase-2 upgrades
 - Lot of work in parallel to Run-3 with still a tight schedule
 - As well to prepare full exploitation of new features in event reconstruction and selection adjusted to physics goals (eg establish sensitivity to pile-up make best use of luminosity levelling)

Additional information

LIU (Intensity) and Levelling mode

Lucio Rossi - 9th HiLumi Collaboration Meeting, Fermilab, 14 OCT 2019

HL-LHC parameters

Parameter	Nominal LHC	HL-LHC 25ns		HL-LHC
	(design report)	(standard)		8b+4e ⁻⁵
Beam energy in collision [TeV]	7	7	,	7
N _b	1.15E+11	2.2E+11		2.2E+11
n _b ¹²	2808	2760	;	1972
Beam current [A]	0.58	1.1		0.79
Half Crossing angle [µrad]	142.5	250	J	235 ⁹
Minimum β [*] [m]	0.55	0.15		0.15
ε _n [μm]	3.75	2.50	Back-up	2.20
Total loss factor R0 without crab-cavity	0.836	0.342	for e-cloud	0.342
Total loss factor R1 with crab-cavity		0.716		0.749
Virtual Luminosity with crab-cavity: Lpeak*R1/R0 [cm ⁻² s ⁻¹]	-	1.70E+35	į	1.44E+35
Levelled Luminosity [cm ⁻² s ⁻¹]	-	→ 5.0E+34 ⁴		3.82E+34
Events / crossing (with leveling and crab-cavities for HL-LHC) ⁷	27	131		140
Peak line density of pile up event [event/mm] (max over stable beams)	0.21	1.28	I	1.3
Leveling time [h] (assuming no emittance growth) ⁷	-	7.3		7.1

ATLAS and CMS Phase-2 Silicon Trackers

ATLAS has a 5 layers pixel detector while CMS has a design for tracks in hardware trigger at 40 MHz pixel coverage is extended from $\eta \simeq 2.4$ to $\eta \simeq 4$

- High granularity (\simeq 4 to 6 x present trackers) to maintain low occupancy
 - Pixel sizes in range $\simeq 50 \times 50$ or 25 x 100 μ m² first layer(s) replaceable
 - Strip pitch ~ 75 to 90 μm and length ~ 2.5 to 5 cm length
- Light (1/2 current weight) to reduced multiple scattering, interactions, e-bremsstrahlung and γ-conversions)
 - Design, new materials new cooling (CO₂) DC/DC, serial powering
- n-in-p and 3D sensors, radiation tolerance up to NIEL $\simeq 2 \times 10^{16}$ 1 MeV neq/cm² and TID of 1 GRad

LHCb Vertex (pixel) Locator

LHCb VELO upgrade for installation during 2020

- 12 disks of 4 modules, inner radius \simeq 4.5 mm
- Planar n-in-p sensors fully depleted up to $\simeq kV$
- 200 μ m thick, 55 x 55 μ m² pixels, \simeq 10 μ m hit resolution
- 120 x 120 μm² micro cooling-channel etched in sensor substrate
 - $\simeq 1.5\% \text{ X/X}_0 \text{ per disk}$
- Radiation tolerance $\simeq 10^{15}$ 1 MeV neq/cm² (T $\simeq -20^{\circ}$)

LHCb scintillating Fiber Tracker

3 stations, each 2.5% X/X0 - 4 plans (X-U-V-X) with ± 5° stereo angle - 50-75 μm resolution

- 3 M fibers Φ 250 μm x 2.5 m (10 000 km)
 - 3 Mrad in inner region
 - High precision assembly of fiber mats

- Readout with 128 SiPM array 250 µm pitch
 - 40°C cooling to sustain 1.2·10¹² neq. /cm2

ATLAS High Granularity Timing Detector

Pad size	$1x1 \text{ mm}^2$
Detector capacitance	2pF
Total dose in the electronics	500- 600 MRad
Neutron dose in the electronics (n/cm^2)	5 10 ¹⁵
Total power available per area	100 mW/cm ²
Collected charge (1 MIP)	4.6fC
for a LGAD gain of 10	
Noise from Landau fluctuations	25ps
(preamplifer+discri)	
iome walk contribution	< 10 ps
TDC binning	20 ps
TDC range	1.2ns up to 3ns
Dynamic range wo/wi PreShower	20/600 MIPs

Two double sided layers 2.4 < η < 4 in front of Calorimeter endcap (r_{active} = 12 - 64 cm), z < 75 mm

- 2(3) hits per track for R >(<) 30 cm
 - 30 ps resolution per track after irradiation
- LGADs 1.3 x 1.3 mm² pads, 6.3 m², 3.54 Mch
- Fluence and TID 4000 fb⁻¹
 - up to 4×10^{15} 1 MeV neq/cm² and 400 MRad
- Operation at -30°
- Inner ring replaceable

CMS Mip Timing Detector

Barrel layer (28 mm) in Tracker volume

- Lyso bars 56 mm x 3 x 3 mm², readout both ends with 2 SiPM 3 x 3 mm², 30(40) ps before(after) irradiation Endcap 2 layers (42 mm each) in front of Calo. Endcap (42 mm), $1.6 < \eta < 3$
- LGAD 1.3 x 1.3 mm² pads, 30(40) ps per track before(after) irradiation

ATLAS muon system upgrades

- Small Wheels
 - Small Thin Gap (2.8 mm) Chambers, shorter strips 2 cm to 3.2 mm, 3 mm pitch, $\sigma \simeq 50 \ \mu m$, up to 2 x 1.2 m², CO₂:n-pentane (55:45)
 - Resistive strip Micro-Megas (0.5 mm pitch), $\sigma \simeq 80 \ \mu m$ per layer, largest module 2 x 2.3 m² made of 5 PCBs, Ar:CO2 (93:7)
- Small Monitoring Drift Tubes
 - Reduced Φ 30 mm (200 Hz/cm²) to 15 mm (2 kHz/cm²), wires 50 $\mu m, \sigma \simeq$ 100 $\mu m,$ L = 1.6 m, Ar:CO2(93:7)

MDT/sMDT resolution

25

CMS muon systems upgrades

- New GEM stations
 - Triple GEM design, H = 1.8 m x W = 1.2 m wedges in 4 modules largest foil size so far (0.5 x 1.2 m²)
 - Improved fabrication single mask foil photolithography, foil stretching mechanism
 - PCB with radial strips, pitch from 0.7 mm to 1.6 mm, $\sigma\simeq 200$ to 450 μm
 - Rate capability up to > 1 MHz/cm², time resolution O(10ns),
- New multigap RPC stations
 - Low resistivity Bakelite 1 to 3 10⁶ Ω.cm, thinner gap and electrodes 2 mm to 1.4 mm,
 - Φ pitch 1.3° to 1.2°, rate capability few kHz/cm², $\sigma \simeq 0.3(2)$ cm \perp (//) to strips
 - Front-end electronics with 2 ns time resolution, 2 strip-ends readout for r(η)-coordinate

