

Forbidden Processes

journées de prospectives de l'IN2P3 – GT01

Benoit Clément (with the help of A. Teixeira and G. Pignol)

What are forbidden processes

Observables for which the SM expected value is

- zero
- much smaller that experimental sensitivity (multiloop SM contribution)

Focus on non collider experiment

Lepton flavour violation : $\mu^- \rightarrow e^-\gamma$, $\mu^-N \rightarrow e^-N$, $\mu^- \rightarrow e^-e^-e^+$,... Spin ½ particle electric dipole moments : neutron, proton, electron, atoms...) also : $0\nu\beta\beta$, neutron oscillations, proton decay...

2

Charged Lepton Flavour Violation

New Physics in the lepton sector: neutrino oscillations reflect violation of lepton flavour in the neutral lepton sector

(1st laboratory discovery on New Physics!)

Minimal SM to accommodate neutrino oscillations: SM + v_R & lepton number conservation (i.e. Dirac neutrino masses)

cLFV transitions are possible, but hugely suppressed by tiny $m_{
m
u}$

Muons as probe of cLFV

Versatile, abundantly produced, offer many experimental advantages

Past & current searches: very good bounds!

Requirements: very high intensity beams @ PSI, J-PARC, FNAL

Detectors with very good resolution and background rejection

Background control (including physics and accidental backgrounds, machine effects, cosmic rays and badly reconstructed tracks)

Comparison between $\mu \rightarrow e\gamma$ and $\mu - e$ conversion

	Background	Challenge	Beam Intensity	Beam type
$\mu \to e \gamma$	accidentals	detector resolution	limited	continuous
µ – e	beam	beam background	no limit	pulsed

BSM sources of cLFV

Model independent (effective approach) $\mathcal{L}^{eff} = \mathcal{L}^{SM} + \sum_{n \ge 5} \frac{1}{\Lambda^{n-4}} \mathcal{C}^n(g, Y, ...) \mathcal{O}^n(l, q, H, \gamma, ...)$

Cast observable in terms of effective couplings and NP scale

Apply experimental bounds to constrain Wilson coefficient (dim 6) C_{ii}^6

- * infer sensitivity of a process to C_{ij}^6
- * hints on scale Λ by taking naïve limits ($C_{ij}^6=1$)

Observable	present bound	future sensitivity
$\mu ightarrow e \gamma$	$4.2 imes 10^{-13}$ [MEG]	$4 imes 10^{-14}~[{ m MEG~II}]$
(dipole)	$\Lambda \geq \mathcal{O}(10^4 \text{ TeV})$	$\Lambda \geq \mathcal{O}(2 imes 10^4 \text{ TeV})$
$\mu ightarrow 3e$ (dipole,4f)	10^{-12} [SINDRUM] $\Lambda \geq \mathcal{O}(500 \; extsf{TeV})$	10^{-16} [Mu3e] $\Lambda \geq \mathcal{O}(5000 \; extsf{TeV})$
<mark>µ-е</mark> (dipole 4f)	$7 imes 10^{-13}$ [SINDRUM] $\Lambda \geq \mathcal{O}(300 10^3 ext{TeV})$	10^{-17} [COMET, Mu2e] $\Lambda \geq \mathcal{O}(5 imes 10^3 10^4 extsf{TeV})$

Or look at specific (well-motivated) models of New Physics:

Exemple of processes generating μ^- to e^- conversion in nuclei

Muon-electron conversion in nuclei

Muonic atoms : 1s bound state formed when μ^- stopped in target

Z)

SM allowed processes:

decay in orbit (DIO) $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$ (3 body) nuclear capture $\mu^- + (A, Z) \rightarrow \nu_\mu + (A, Z - 1)$ cLFV BSM process :

 $\mu^- - e^-$ conversion: $\mu^- + (A, Z) \rightarrow e^- + (A, Z)$ Coherent process, spin-independent rate $\propto Z^2$

Event signature: single mono-energetic electron

$$E_{\mu e}^{N} = m_{\mu} - E_{B}(A, Z) - E_{R}(A, Z)$$
$$E_{R} = \frac{\left(m_{\mu} - E_{B}(A, Z)\right)^{2}}{2m_{N}}$$
$$E_{\mu e}^{Al, Pb, Ti} \approx \mathcal{O}(100 \text{ MeV})$$

Current bounds:

obtained for Gold nuclei (SINDRUM II @ PSI) $CP(u = 2.4u) < 7 > (10^{-13})$

$$CR(\mu - e, Au) < 7 \times 10^{-1}$$

Results from SINDRUM-II (BR <7 \times 10⁻¹³ @ 90%CL)

COMET : COherent Muon to Electron Transition

ØJ-PARC

- 8 GeV 56 kW proton beam
- Thick target with 1~2 hadron interaction lengths
- Powerful capture magnet: 5 T
- Expected muon yield: 10^{11} muon/s ($10^8 \mu$ /s at PSI)

COMET Phase-I Technical Design Report

The COMET Collaboration: R. Abramishvili¹⁰, G. Adamov^{10.16}, R. R. Akhmetshin^{3,29}, A. Allin²², J. C. Angélique⁴, V. Anishchik¹, M. Aoki³⁰, D. Aznabayev¹⁴, I. Bagaturia¹⁰, G. Ban⁴, Y. Ban³¹, D. Bauer¹¹, D. Baygarashev¹⁴, A. E. Bondar^{3,29}, C. Cârloganu⁸, B. Carniol⁴, T. T. Chau³⁰, J. K. Chen³⁵, S. J. Chen²⁷, Y. E. Cheung²⁷, W. da Silva³⁴,
P. D. Dauncey¹¹, C. Densham³², G. Devidze³⁶, P. Dornan¹¹, A. Drutskoy^{22,25}, V. Duginov¹⁶, Y. Eguchi³⁰, L. B. Epshteyn^{3,29,28}, P. Evtoukhovich^{16,2}, S. Fayer¹¹, G. V. Fedotovich^{3,29}, M. Finger Jr⁶, M. Finger⁶, Y. Fuji²⁶, Y. Fukao¹⁸, J. L. Gabriel⁴, P. Gay⁸, E. Gillies¹¹, D. N. Grigoriev^{3,29,28}, K. Gritsay¹⁶, V. H. Hai⁴⁰, E. Hamada¹⁸, I. H. Hashim²⁴, S. Hashimoto²⁰, O. Hayashi³⁰, T. Hayashi³⁰, T. Hiasa³⁰, Z. A. Ibrahim²⁴, Y. Igarashi¹⁸, F. V. Ignatov^{3,29}, M. Iio¹⁸, K. Ishibashi²⁰, A. Issadykov¹⁴, T. Itahashi³⁰, A. Jansen³⁸, X. S. Jiang¹³, P. Jonsson¹¹, <u>T. Kachelhoffer⁵</u>, V. Kalinnikov¹⁶, E. Kaneva¹⁶, <u>F. Kapusta³⁴</u>, H. Katayama³⁰, K. Kawagoe²⁰, R. Kawashima²⁰, N. Kazak², V. F. Kazanin^{3,29}, O. Kemularia¹⁰, A. Khvedelidze^{16,10}, M. Koike³⁹, T. Kormol¹³⁸, G. A. Kozlov¹⁶, A. N. Kozyrev^{3,29}, M. Kravchenko^{16,1}, B. Krikler¹¹, G. Kumsiashvili³⁰, Y. Kuno³⁰, Y. Kuriyama¹⁹, Y. Kurochkin², A. Kurup¹¹, B. Lagrange^{11,19}, J. Lai³⁰, M. J. Lee¹², H. B. Li^{13,7}, R. P. Litchfield¹¹, W. G. Li¹³, T. Loan⁴⁰, D. Lomidze¹⁰, I. Lomidze¹⁰, P. Kodenita³⁰, A. Melikadz¹⁰, A. Mohamed Kamal Azm¹²⁴, A. Moiseenko¹⁶, M. Moritsu¹⁸, Y. Matsuda³⁰, X. Matsuda³⁰, X. Nakatugawa¹³, Y. Nakazwa³⁰, J. Nash²⁶, H. Natori¹², Y. Sukasmura³⁰, Y. Matsuda³⁰, Y. Nakatugawa¹³, Y. Nakazwa³⁰, Y. Nakat²⁰, T. Nakamoto¹⁸, Y. Makamura³⁰, Y. Nakatugawa¹³, Y. Nakazwa³⁰, Y. Nakat²⁰, T. Nakamoto¹⁸, Y. Matsuda³⁰, Y. Makatugawa¹³, Y. Nakazwa³⁰, J. Nash²⁶, H. Natori¹², Y. Niess⁸, M. Nioradze³⁶, H. N The COMET Collaboration: R. Abramishvili¹⁰, G. Adamov^{10,16}, R. R. Akhmetshin^{3,29} Y. K. Semertzidis^{12,17}, N. Shigyo²⁰, Dz. Shoukavy², M. Slunecka⁶, D. Stöckinger³⁸, M. Sugano¹⁸, T. Tachimoto³⁰, T. Takayanagi³⁰, M. Tanaka¹⁸, J. Tang³⁵, C. V. Tao⁴⁰,
A. Teixeira⁸, Y. Tevzadze^{*36}, T. Thanh⁴⁰, J. Tojo²⁰, S. S. Tolmachev^{3,29}, M. Tomasek⁹, M. Tomizawa¹⁸, T. Toriashvili¹⁰, H. Trang⁴⁰, I. Trekov³⁶, Z. Tsamalaidze^{16,10}, N. Tsverava^{16,10}, T. Uchida¹⁸, Y. Uchida¹¹, K. Ueno¹⁸, E. Velicheva¹⁶, A. Volkov¹⁶,
V. Vrba⁹, W. A. T. Wan Abdullah²⁴, <u>P. Warin-Charpentier³⁴</u>, M. L. Wong³⁰, T. S. Wong³⁰, C. Wu^{13,27,30}, T. Y. Xing^{13,7}, H. Yamaguchi¹⁸, A. Yamamoto¹⁸, M. Yamanaka²¹, T. Yamane³⁰, Y. Yang²⁰, T. Yano³⁰, W. C. Yao³⁰, B. Yeo¹⁷, H. Yoshida³⁰, M. Yoshida¹⁸, T. Yoshioka²⁰, Y. Yuan¹³, Yu. V. Yudin^{3,29}, M. V. Zdorovets¹⁴, J. Zhang¹³, Y. Zhang¹³, and K. Zuber³⁸

COMET Collaboration: over 200 people from 40+ Institutes in 17 countries! (and still growing!) **COMET spokesperson:** Y. Kuno (Osaka Univ.) **COMET-France:** approved end 2018

Participation from IP2I-Lyon, LPC-Clermont, LPNHE-Paris, LPC-Caen and CCIN2P3

COMET : phases I and II

TOF measurement and PID

IN2P3 Contribution to Phase-I

Data analysis

Software developments:

- tracking : original algorithm implementation & use of GPUs

- simulation of the background induced by atmospheric muons.

- estimation of radiation yields at sub-detector level with MCNPX and PHITS

Hardware contribution to the Cosmic Ray Veto:

- design of the CRV based on GRPCs

- construction and validation of a CRV module based on GRPCs

(resolutions, dead time, efficiency, stability, radiation hardness, etc)

Computing@CCIN2P3: Data Storage and Users Management

Cosmic Ray Veto

- Scintillator slabs with embedded WLS-fibres and SiPM readout
- Resistive Plate Chambers (RPC) read out with XY strips and Feeric ASIC (LPC/ALICE design)

in the highest neutron yield areas

FE board for a GRPC module, with two Feeric ASICs

cLVF experiments time scale

Electric dipole moments

For theoricist

CP-violating term in the EM current : $\mathcal{L}_{int} = \frac{i}{2} \overline{\psi} F_{\mu\nu} \sigma^{\mu\nu} \gamma^5 \psi$ Important for Baryon asymmetry !

In standard model : only through 3 (quarks) or 4 (leptons) loops EW diagrams

For the experimentalist

u, c

At low energy (non relativistic limit): $\mathcal{L}_{int} = -\vec{d} \cdot \vec{E} = d\hat{j} \cdot \vec{E}$ Coupling between the **Spin** and an external **Electric Field**

> Change in Larmor frequency if *B* and *E* fields are (anti)paralell $2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} dE$ $d_n < 1.8 \times 10^{-26} e \text{ cm (PSI, 2020)}$ $d_e < 1 \times 10^{-29} e \text{ cm (Yale, Harvard, 2018)} \qquad 11$

EDMs in the world

Neutrons (~200 ppl)

- Beam EDM @ Berne
- LANL EDM @ Los Alamos

www.psi.ch/en/nedm/edms-world-wide

année de publication

12

LPSC Grenoble : 2 MCF + 1 DR

Beyond SM contribution

SM contribution through EW loops : $d_n \approx 10^{-33} e \text{ cm}$

The QCD contribution : $\mathcal{L} = \frac{\alpha}{8\pi} \theta \ G^{\mu\nu} \widetilde{G_{\mu\nu}}$

No known mechanism to reduce θ to (nearly?) zero -> axions ?

 $d_n \approx \theta \times 10^{-16} \ e \ {\rm cm}$ $\rightarrow \theta < 10^{-10}$ « Strong CP problem »

One loop contribution : for example MSSM contains ~40 CP violating imaginary parameters...

$$d_n \approx e \frac{\alpha}{4\pi} \frac{m_q}{M_{CPV}^2} \approx \left(\frac{1 \text{ TeV}}{M_{CPV}}\right)^2 \times 10^{-25} e \text{ cm}$$

Fig. 2. One-loop diagram which may contribute to d_n in a softly broken susy model.

Ellis, Ferrara, Nanopoulos, PLB **114** (1982). *EDM induced by soft mass terms for squarks and gluinos*

Two loops contribution :

Modified Higgs Yukawa coupling:

$$\mathcal{L} = -\frac{y_f}{\sqrt{2}} \left(\kappa_f \bar{f} f h + i \tilde{\kappa}_f \, \bar{f} \gamma_5 f h \right)$$

Barr, Zee, PRL 65 (1990)

Computing nEDM on the lattice

Going from quarks EDMs to the neutron EDM is **low energy QCD**

Current efforts to compute it in the framework of Lattice QCD using dimension 5 and 6 CP violating extension of the QCD lagrangien :

$$\mathcal{L}_{QCD} + i\theta G_{\mu\nu}\tilde{G}_{\mu\nu} + i \sum_{q} d_{q}^{\gamma} \bar{q} \sigma^{\mu\nu} \tilde{F}_{\mu\nu} q + i \sum_{q} d_{q}^{G} \bar{q} \sigma^{\mu\nu} \tilde{G}_{\mu\nu} q + d_{G} f^{abc} G_{\mu\nu}^{a} \tilde{G}^{\nu\beta,b} G_{\beta}^{\mu,c}$$

 θ -term Quarks EDM Quarks chromoEDM Weinberg operator

Imaginary nature of CP violating terms pose specific problems and conventional Markov Chain Monte Carlo methods cannot be used

need to develop new techniques

Neutron EDMs in the world

Based on ultra cold neutron storage (all but one) Neutron production : spallation or nuclear reactor + thermalisation + inelastic cooling (He-II or solid D₂) Room temperature experiments : UCN need to be produced (source) then extracted/guided to the experimental chamber Cryogenic experiments : UCN production and EDM measurement takes place at the

same place (in superfluid helium at 1K...)

Place	Neutron source	Concept	Stage/Readiness	
SNS	Spallation + UCN production in situ	Cryogenic double chamber with helium comagnetometers	« large scale integration » phase	
PSI	Spallation + sD2 UCN source	n2EDM: double Ramsey chamber with mercury comagnetometers	Source running, experiment under construction	
LANL	Spallation + sD2 UCN source	double Ramsey chamber with mercury comagnetometers	Source running, experiment in design phase	
TRIUMF	Spallation + superfluid He UCN source	double Ramsey chamber	Source under construction, experiment in conceptual phase	
ILL	Reactor + superfluid He UCN source	panEDM: double Ramsey chamber, no comagnetometers	Source and experiment under construction	
PNPI	WWR-M reactor + inpile superfluid He UCN source	Getting a really high density of UCNs	Source under construction	
ESS	Spallation + Cold neutron beam	100m double beam + time of flight	Demonstration phase, small prototype operational @ ILL	-

Room temperature UCN experiments aiming at a precision of $\approx 1 \times 10^{-27} e$ cm

How to measure nEDM

Count neutrons in \uparrow and \downarrow spin states Relate asymmetry to precession frequency

Of course many extra subtleties and corrections are needed...

Statistical sensitivity:
$$\sigma_{d_n} = \frac{\hbar}{2 \, \alpha \, E \, T \, \sqrt{N}}$$

1 cycle : $T \approx 180 s$, N = 5000 to 15000

nEDM and n2EDM @ PSI

n2EDM @ PSI

The nEDM collaboration has demonstrated its capacity to control systematic effects at a few $10 imes 10^{-27} e$ cm

Further improvement for n2EDM :

Control of the magnetic field homogeneity and measurement : improved systematiccs

- Colossal magnetic shield (6 mu-metal layers, $5 \times 5 \times 5 \text{ m}^3$), shielding factor 100000
- Dual chamber apparatus : simultaneous measurement of both field configuration
- Advanced magnetometry (external and comagnetometry)

Increase the statistics

- 5 year data taking
- Larger chambers

Possible further improvement : « magic field » to compensate Systematic vxE effect in comagnetometer *G.Pignol 1812.01420*

IN2P3 contribution

For n2EDM, French contribution financed mostly through : ANR (Th. Lefort) + ERC (G.Pignol) Continue in our field of expertise of nEDM : Magnetic field coils, detectors, Hg magnetometry and data analysis

Caen : Vacuum chamber

IN2P3 contribution

For n2EDM, French contribution financed mostly through : ANR (Th. Lefort) + ERC (G.Pignol) Continue in our field of expertise of nEDM : Magnetic field coils, detectors, Hg magnetometry and data analysis

Summary and conclusion

Forbidden processes :

Interesting window into BSM Physics Complementarity with direct searches

In France :

Small community with both theoricists (phenomenology, effective theories, lattice

QCD) and experimentalists.

Two main experimental projects supported by IN2P3

COMET : charged lepton flavour violation n2EDM : neutron electric dipole moment

Experiments with timescale spanning the coming decade and beyond!

Extra material

COMET experiment: muon-electron conversion and more!

COMET offers the possibility to study further

cLFV observables (Coulomb enhanced $\mu^-e^- \rightarrow e^-e^-$ decay), LNV decays ($\mu^- + (A, Z) \rightarrow e^+ + (A, Z - 2)^*$) and even search for light exotics ($\mu^- \rightarrow e^- X$)

- $\mu N_z \rightarrow e^+ N_{z-2}$: Lepton number violation (LNV)
 - Current limits: $\mu^{-} Ti \rightarrow e^{+} Ca(gs) \leq 1.7 \times 10^{-12}$ $\mu^{-} Ti \rightarrow e^{+} Ca(ex) \leq 3.6 \times 10^{-12}$
 - Can improve with a proper target
- $\mu^- e^- \rightarrow e^- e^-$: μ^- and e^- overlap proportional to Z^3

Phys. Lett. B422 (1998) Phys. Lett. B764 (2017) Phys. Rev. D96 (2017)

Phys. Rev. Lett. 105 (2010) Phys. Rev. D93 (2016) 076006 Phys. Rev. D97 (2018) 015017

- $\mu^- \rightarrow e^- x$: X can be a new light boson, axion, etc.
 - feasibility being studied in COMET

Phys. Rev. D79. 055023 (2009) Phys. Rev. D84. 113010 (2011)

COMET experiment: COherent Muon to Electron Transition

COMET: Phase I – backgrounds and Cosmic Ray Veto

Туре	Background	Estimated events
Physics	Muon decay in orbit	0.02
	Radiative muon capture	0.0019
	Neutron emission after muon capture	< 0.001
	Charged particle emission after muon capture	< 0.001
Prompt Beam	* Beam electrons	
	* Muon decay in flight	
	* Pion decay in flight	
	* Other beam particles	
	All (*) Combined	≤ 0.0038
	Radiative pion capture	0.0028
	Neutrons	$\sim 10^{-1}$
Delayed Beam	Beam electrons	\sim
	Muon decay in flight	\sim (
	Pion decay in flight	\sim (
	Radiative pion capture	\sim (
	Anti-proton induced backgrounds	0.0012
Others	Cosmic rays [†]	< 0.0
Total		0.03
	[†] This estimate is currently limited by computing resource	ces.

- Scintillator slabs with embedded WLS-fibres and SiPM readout
- Resistive Plate Chambers (RPC) read out with XY strips and Feeric ASIC (LPC/ALICE design) in the highest neutron yield areas

FE board for a GRPC module, with two Ferric ASICs

COMET experiment: COherent Muon to Electron Transition

COMET facility: ready before end 2022 CDC calibration with atmospheric muons: ongoing First beam muons expected end 2022

Energy scale ladder

