A propos de la brisure de la symétrie *CP* LHCb, Belle II et FCC-ee

Stéphane Monteil, LPC, Université de Clermont

Disclaimers

- Three Physics-driven talks covering the very same experiments: CPV (this one), rare decays and spectroscopy. Specific comments of the expts assigned with a certain arbitrariness to each of the talk: current exp. landscape and timeline of future exp. in this talk, details on Belle II detector and operation in Justine's talk and specifics on the so-called LHCb upgrade II in Patrick's talk.
- The talks are focussing to collider physics but there is a strong interplay with low-energy experiments with muon beams, kaons, neutrons etc...
- There is a clear case for Flavours at large in the mid- and long-terms.

Journées de Prospective IN2P3 - Physique des particules

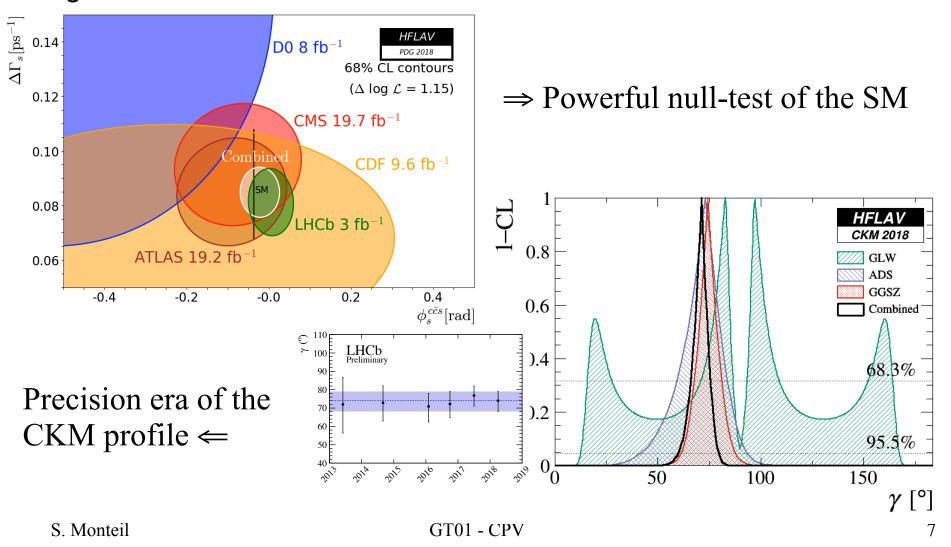
Outline

- Present experimental landscape for Flavours Physics at colliders.
- CPV: a state of the art and the lessons for the future.
- The projections towards the HL-LHC and the FCC-*ee* programs.
- Conclusions.

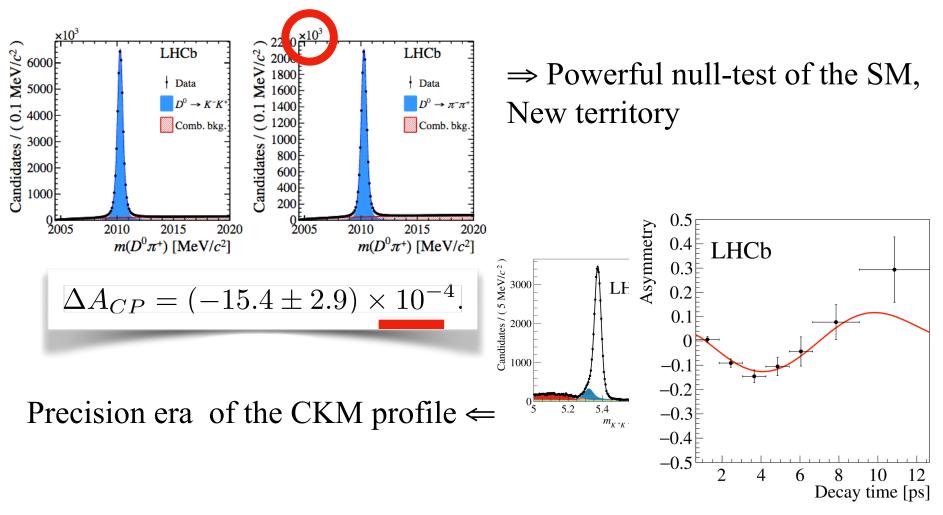
1) The present experimental landscape at colliders.

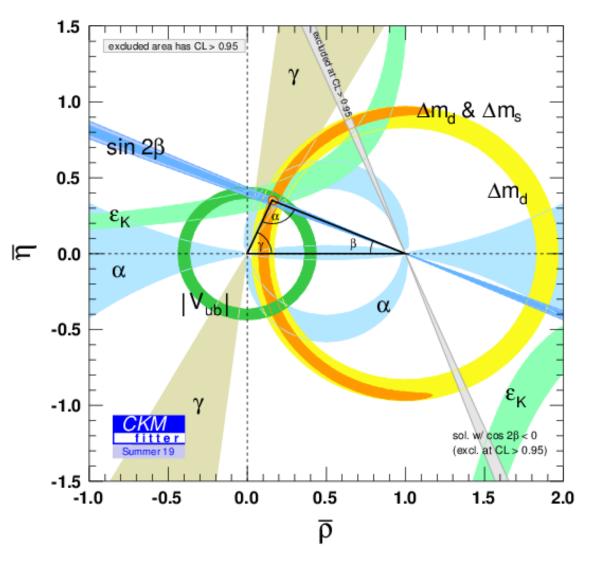
Two machines, four experiments

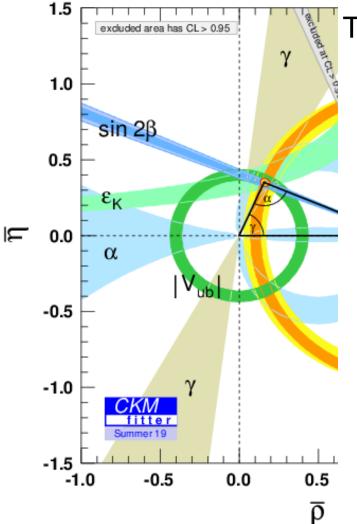
- LHC: hadron collider, three experiments addressing Flavour Physics. One dedicated, LHCb.
- SuperKEKB: asymmetric e+e- operated at the Upsilon(4S) threshold. One experiment, Belle II.
- Obvious complementarity: distinctive features, different experimental environments.
- Similar timelines from now on, LHCb and Belle II will take concurrently data for ~10 years. LHCb Upgrade at HL-LHC $Eol \rightarrow TDR$. Belle coll. envisions as well an upgrade (5x50/ab).
- Let's note that a kaon Physics program is running as well in parallel - another view of the Unitarity from rare kaons $K \rightarrow \pi v v$. GT01 - CPV


The observables relevant to the CKM profile (hence allowing predictions to be made):

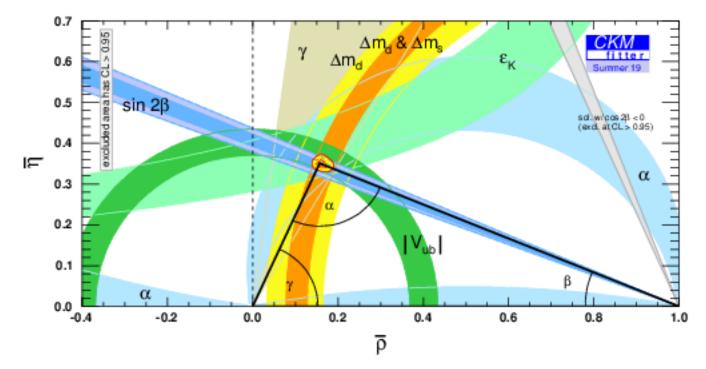
- Chosen to be experimentally precise and theoretically clean (enough).
- The *CP*-conserving observables: neutral *B* meson oscillation frequencies (fully dominated by hadronic parameters decay constants and bag factors), *V*_{ub} and *V*_{cb} matrix elements from semileptonic decays of *b*-hadrons.
- The clean CP-violating observables: CKM angles. Almost theory-free presently.
- The (less-clean) *CP*-violating asymmetry in the mixing of kaons.


A selection of *CP*-violating observables relevant to the null-tests of the SM:


- Weak mixing phase of the Bs
- *CP*-violating (semileptonic) asymmetries in the *B* mixing.
- Mixing-induced *CP* violation in $\Delta B = 1$ transitions.
- CP asymmetries in charm mixing and decays.
- etc...
- ... + many others about CP-conserving obs. , e.g. rare decays

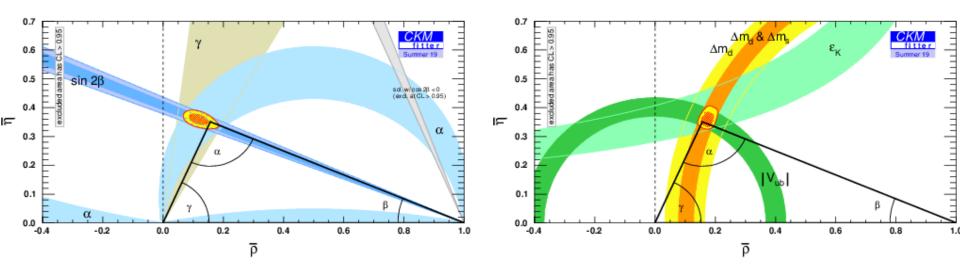

A selection of major recent achievements: weak *Bs* mixing phase, gamma combination

A selection of major recent achievements: CP violation in charm, time-dependent CPV in B_s systems,

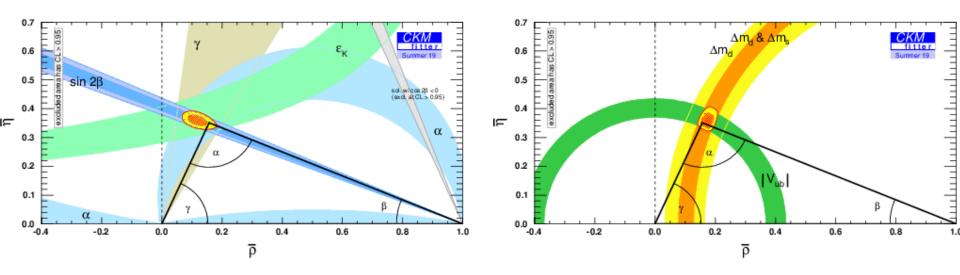


The second pillar of the SM :

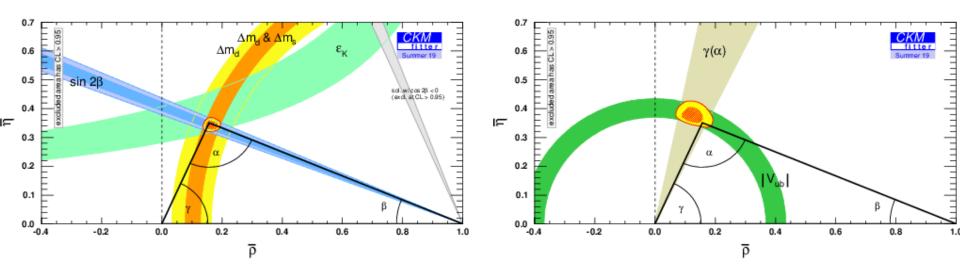
- Remarkable consistency of all observables within the SM. The SM passes the test and one can do the metrology of its parameters.
- CKM is at work in charged EW currents.
- KM paradigm IS the dominant source of *CP* symmetry breaking.


A closer look: the players

• The *B*-factory established most of this legacy.


• Yet, LHCb drives the gamma angle precision, and stepped in significantly in V_{ub} and V_{cb} matrix elements determination.

A closer look: theory-free vs hadronic parameters.


- Remarkable agreement.
- Acknowledgement of the progresses and successes of Lattice QCD to predict the hadronic parameters and the form factors.

A closer look: CP-conserving vs CP-violating.

- Again remarkable agreement.
- Acknowledgement of the progresses made in LQCD (here semileptonic form factors, decay constants and bag factors).

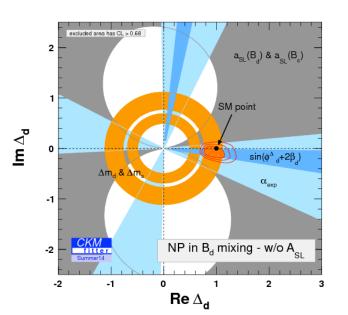
A closer look: loops vs trees.

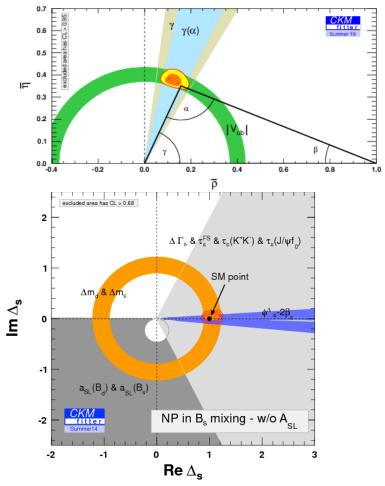
- Again remarkable agreement.
- Obvious display of the importance / necessity of a more precise gamma. LHCb on its way. LHCb upgrade II in perspective.
- Same comment in order for the matrix element V_{ub} .

Quasi-model-independent constraints on BSM in in the mixings

 Fix the apex by considering (model-dependence is there) that four-fermions couplings are SM and 3x3 unitarity holds : main players are gamma and V_{ub} (V_{cb}).

 $|V_{ud}|, |V_{us}|, |V_{ub}|, |V_{cb}|, B^+ \to \tau^+ \nu_{\tau} \text{ and } \gamma$

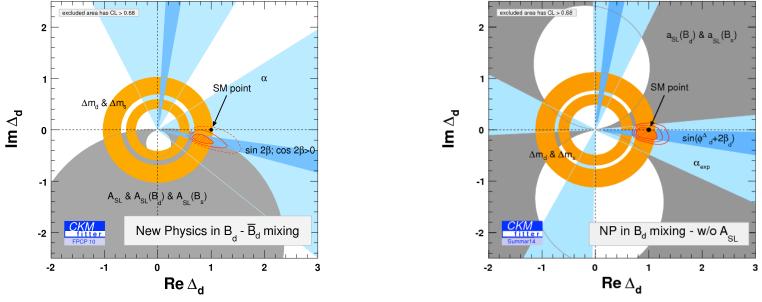

 Model the BSM contributions in mixing as a complex number multiplying the SM mixing hamiltonian matrix elements


$\Delta_q = \Delta_q e^{i 2 \Phi_q^{_{ m NP}}}$	parameter	prediction in the presence of NP
-q $ -q $	Δm_q	$ \Delta_q^{ m NP} imes \Delta m_q^{ m SM}$
	2β	$2\beta^{\rm SM} + \Phi^{\rm NP}_d$
$\left\langle B_{q} \left \mathcal{H}_{\Delta B=2}^{\mathrm{SM+NP}} \left \bar{B}_{q} \right\rangle \right. \equiv \left\langle B_{q} \left \mathcal{H}_{\Delta B=2}^{\mathrm{SM}} \right \bar{B}_{q} \right\rangle$	$2\beta_s$	$2\beta_s^{ m SM} - \Phi_s^{ m NP}$
	2α	$2(\pi - \beta^{\rm SM} - \gamma) - \Phi_d^{\rm NP}$
$\times (\operatorname{Re}(\Delta_q) + i \operatorname{Im}(\Delta_q))$	$\Phi_{12,q} = \operatorname{Arg}\left[-\frac{M_{12,q}}{\Gamma_{12,q}}\right]$	$\Phi^{\scriptscriptstyle ext{SM}}_{12,q}+\Phi^{\scriptscriptstyle ext{NP}}_q$
	A^q_{SL}	$\frac{\Gamma_{12,q}}{M_{12,q}^{\mathrm{SM}}} \times \frac{\sin(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})}{ \Delta_q^{\mathrm{NP}} }$
	$\Delta \Gamma_q$	$2 \Gamma_{12,q} \times \cos(\Phi_{12,q}^{\mathrm{SM}} + \Phi_q^{\mathrm{NP}})$

2) CPV, a state of the art, beyond the CKM profile

Model-independent constraints on BSM in in the mixings

 Fix the apex by considering (modeldependence is there) that four fermions couplings are SM : main players are gamma and V_{ub} (V_{cb}).



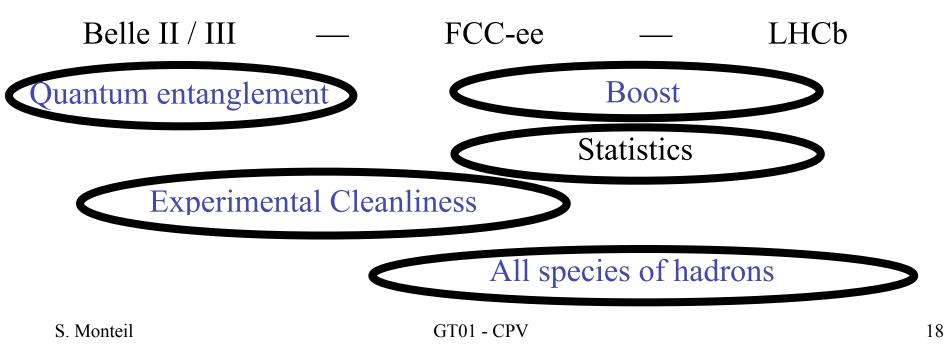
Sizeable NP is still allowed by the LHCb constraint in both B_d and B_s mixing.

S. Monteil

Model-independent constraints on BSM in in the mixings

- Back at the beginning of the previous decade, Belle observed for the first time the decay B⁺→τ⁺ν (sensitive to V_{ub}) ith a quite high branching fraction.
- This favoured high values of $\sin 2\beta$ in the SM. A new phase in the *Bd* mixing accomodated the SM $B^+ \rightarrow \tau^+ \nu$ vs $\sin 2\beta$ discrepancy.

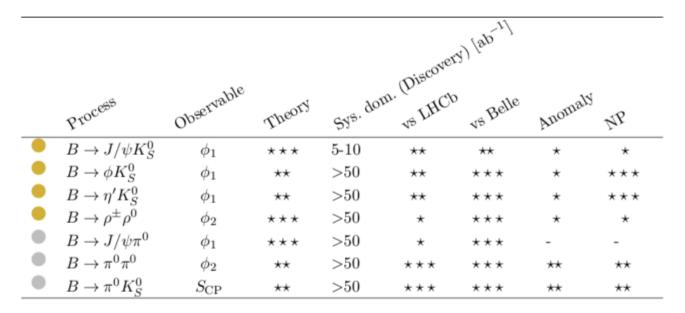
S. Monteil


Take away messages:

#1 Tremendous success of the SM.

#2 Yet a single observation almost smashed the SM. If BSM is there and close, it could come as naturally as in the example I chose. Precision in order ! Remember the Russian experiment which stopped just at the edge of the observation of $K_{\perp} \rightarrow \pi\pi$.

#3 Normalisation matters: at the anticipated precisions of the relevant experiments to come (Belle II, LHCb upgrade II, FCC-*ee*), these explorations will likely be limited by the knowledge of V_{cb} and the LQCD uncertainties.


- Based on the documents:
 - LHCb upgrade II <u>https://arxiv.org/abs/1808.08865</u>
 - HL-LHC http://arxiv.org/abs/1812.07638
 - Belle II <u>https://arxiv.org/abs/1808.10567</u>
 - FCC-ee <u>http://cds.cern.ch/record/2651294/</u>
- Machine / Experiments distinctive characteristics:

3) The future prospects — Belle II in one slide.

- Belle II is approved, up and running.
- Belle II case for CP violation is obvious: e.g.

Table 8: Belle II Golden/Silver observables on the measurement of time dependent CP violation in B decays and the measurement of the UT angles ϕ_1 and ϕ_2 . See the caption in Table 4 for more details.

Relevant at many other places of the case.

S. Monteil

 An Expression of Interest for an upgrade of the experiment in the times of teh HL-LHC has been submitted by the collaboration:

https://arxiv.org/abs/1808.08865

- In phase with the full exploitation of HL-LHC.
- The French LHCb groups have jointly introduced a contribution to this prospective supporting this upgrade:

rect searches for new physics

heory)

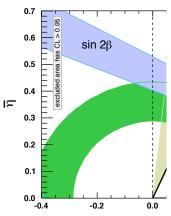
ébastien Descotes-Genon^b, Benjamin Fuks^c, orov^d, Diego Guadagnoli^e, Abhishek Iyer^f, ^a, Olivier Leroy^g, Farvah Mahmoudi^{f*}, ^f, Savvas Zafeiropoulos^a

e Toulon, CNRS, CPT, Marseille, France

Iniv. Paris-Sud, Université Paris-Saclay, 91405 Orsay

rgies (LPTHE), UMR 7589, Sorbonne Université et CNRS, 252 Paris Cedex 05, France

ot Sorbonne Paris Cite, CNRS/IN2P3, Paris, France


oie Mont-Blanc, 74941 Annecy Cedex, France

IN2P3, Institut de Physique des 2 Infinis de Lyon, F-69622 rbanne, France LHCb France input to the IN2P3 national prospects 2020-2030

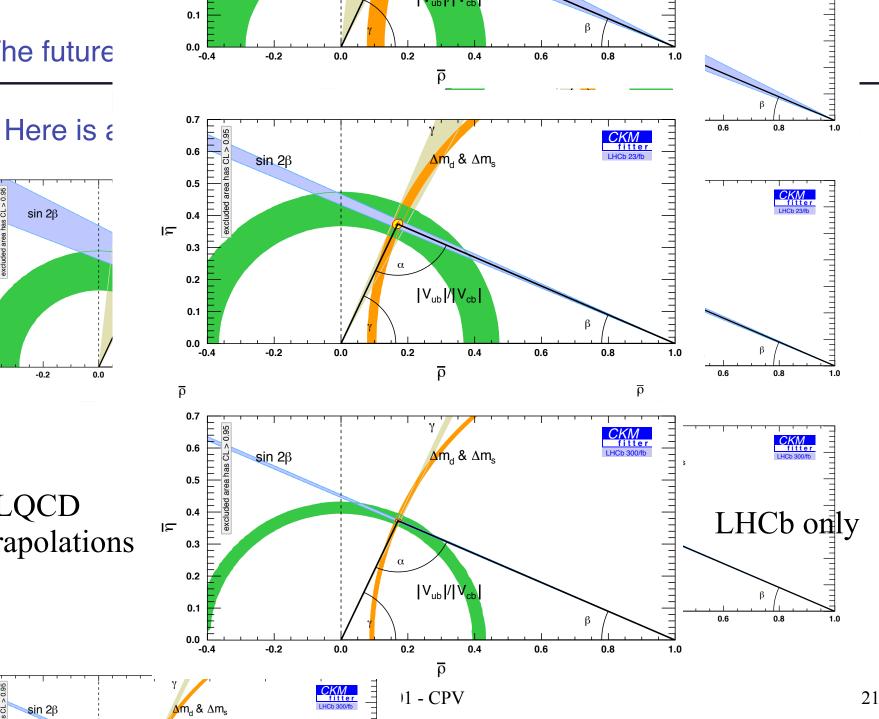
November 27, 2019

H. Afshamia², Z. Ajaltouni², Y. Amhis⁴, E. Aslanides³, V. Balagura^{4,6}, S. Barsuk⁴,
A. Bharucha⁹ E. Ben-Haim⁵, E. Bertholet⁵, P. Billoir⁵, J. Cerasoli³, J. Charles⁹,
M. Charles⁵, M. Chefdeville¹, J.A.B. Coelho⁴, J. Cogan³, E. Cogneras², D. Decamp¹,
L. Del Buono⁵, O. Deschamps², F. Desse⁴, A. Downes⁴, D. Fazzini⁴, F. Fleuret^{4,6},
B. Fuks⁸, F.A. Garcia Rosales⁴, D. Gerstel³, Ph. Ghez¹, V.V. Gligorov⁵, T. Grammatico⁵,
D. Guadagnoli⁷, M. Knecht⁹, R. Le Gac³, R. Lefèvre², L. Lellouch⁹, O. Leroy³,
V. Lisovskyi⁴, F. Machefert⁴, F. Mahmoudi¹⁰, G. Mancinelli³, J.F. Marchand¹, C. Marin
Benito⁴, E. Maurice^{4,6}, C. Meaux³, M.-N. Minard¹, S. Monteil², A.B. Morris³, E.M. Niel⁴,
P. Perret², B. Pietrzyk¹, F. Polci⁵, A. Poluektov³, R. Quagliani⁵ B. Quintana²,
R.I. Rabadan Trejo³, M. Reboud¹, F. Reiss⁵, P. Robbe⁴, A. Robert⁵, H. Sazak²,
M.H. Schune⁴, S. T'Jampens¹, V. Tisserand², D.Y. Tou⁵, A. Usachov⁴, D. Vom Bruch⁵,

-0.2

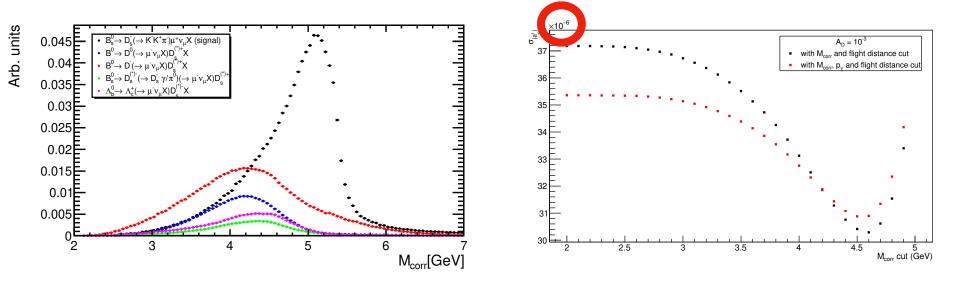
w/ LQCD extrapolations

sin 2β


0.7

0.6

F

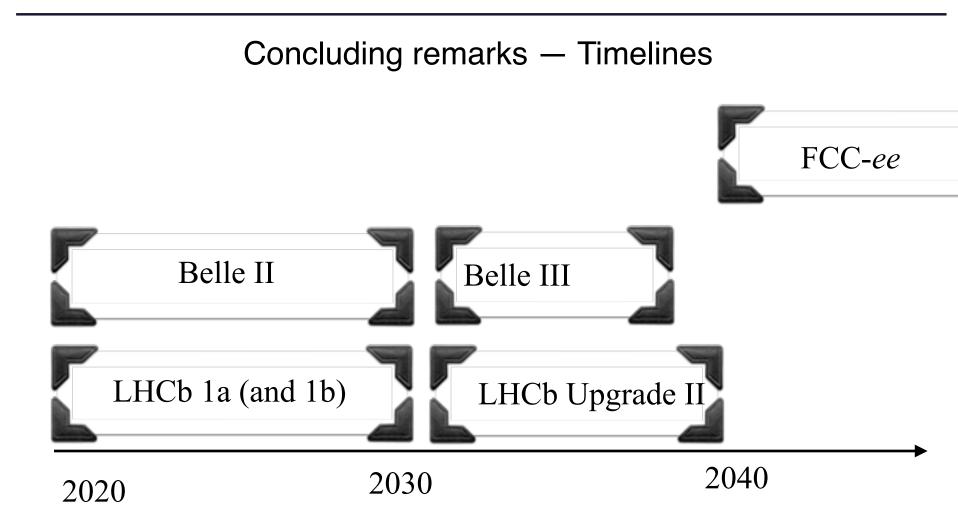

> 0.95

sCL

3) The future prospects — FCC-*ee* in two slides

- FCC-*ee* competes favourably with both Belle II and LHCb upgrade, as far as *CP* observables are concerned.
- One quantitative study (work in progress), to give the flavour of the possible precision. SM value of B_s semileptonic asymmetry is at reach !

- The systematic exploration is yet to perform.
 - S. Monteil


- FCC-*ee* competes favourably with both Belle II and LHCb upgrade, as far as *CP* observables are concerned.
- One of the main limitation of the analysis of NP in mixings is the normalisation of the CKM profile through *V*_{cb.}. The possibility of determining it at the *WW* threshold is a game changer.
- Flavour Physics and Electroweak precision tests are intertwined. The exclusive reconstruction tags, as pioneered in *B*-factories, can serve the precision of measurements as *R_b* or *A*_{FB}(*bb*).
- The design study explored territories where FCC-*ee* is unique.
- The comprehensive exploration is yet to perform.

Concluding remarks — Physics.

- Remarkable consistency conveyed by all observables (*CP*-conserving and *CP*-violating) in *b*-, *c*-, *s*-flavoured particle systems. This significantly constrains BSM scenarii. It defines to some extent the Flavour problem.
- The study of *CP* violation in *b*-flavoured hadrons is entering an actual precision era with the LHCb upgrade and Belle II programs which are presently building on. Authentic complementarity, in *CP* studies, as for the rare-and less-rare decays. LHCb Upgrade II under consideration for the full exploitation of the HL-LHC program.
- FCC program has unique capabilities (mostly explored so far in rare decays

 see next talk) and can be key (here also) for sorting out NP models.

4) Summary about CP breaking perspectives.

Seamlessly continuation of the Physics program

4) Summary about CP breaking perspectives.

Concluding remarks - Community

- The GDR Intensity frontier community is the likely representative platform of the French Flavour experimental and theoretical communities.
- A poll was issued to measure how this community projects into future projects. Main outcomes for collider physics:
 - For the mid-term, LHCb Upgrade II is acclaimed. Actual work has started for most of the LHCb French groups.
 - For the long-term, FCC-ee is judged, with the same surface, as the natural continuation of this Physics program. Importance of at least 5 10¹² Z decays.

