Theory
 (flavour and lattice) the latest news

Aoife Bharucha, CPT Marseille
Séminaire thématique GT01 "Physique des particules"
Prospectives nationales 2020-2030.

$$
13 / 3 / 2020
$$

Overview

\% Neutral currents searches for BSM

* Charged currents/ high precision CKM
$\because(g-2)_{\ell}$
\therefore Further Lattice QCD activities

Neutral current BSM searches

History of the anomalies part I:

 Several LHCb measurements deviate from Standard model (SM) predictions by 2-30Measurements of lepton flavour universality (LFU) ratios R_{K} and $\mathrm{R}_{\mathrm{K} *}$ showed deviations from SM by about 2.5σ each. LHCb arXiv:1406.6482, arXiv:1705.05802]

$$
R_{K(*)}=\frac{\mathcal{B}\left(B \rightarrow K^{(*)} \mu^{+} \mu^{-}\right)}{\mathcal{B}\left(B \rightarrow K^{(*)} e^{+} e^{-}\right)}
$$

\therefore Angular observable $\mathrm{P}_{5^{\prime}}$ in $B \rightarrow K^{*} \mu^{+} \mu^{-}$:

- 2013: $1 \mathrm{fb}^{-1} \mathrm{LHCb}$ found 3.7 .
- 2015: $3 \mathrm{fb}^{-1} \mathrm{LHCb}$ found 3σ in 2 bins [arXiv: 1512.04442]
- 2016: Belle found a similar result in the bin
\therefore LHCb found several tensions in the Branching ratios of $B \rightarrow K^{(*)} \mu^{+} \mu^{-}$and $B_{s} \rightarrow \phi \mu^{+} \mu^{-}$[arXiv: 1403.8044, arXiv:1506.08777, arXiv:1606.04731]

Introduction to FCNC processes

phase space factor

$$
B \rightarrow K l^{+} l^{-}
$$

$$
\left\langle K^{*} \ell \ell\right| \mathcal{H}|B\rangle \sim\left\langle K^{*} \ell \ell\right| \mathcal{H}_{\mathrm{eff}}|B\rangle=\frac{G_{F}}{\sqrt{2}} \sum_{i} \mathcal{C}_{i} \underbrace{\left\langle K^{*} \ell \ell\right| \mathcal{O}_{i}|B\rangle}_{\text {matrix element }}
$$

Operator basis:

Focus on:

$$
\begin{aligned}
\mathcal{O}_{9 \ell} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \ell\right) \\
\mathcal{O}_{10 \ell} & =\frac{e^{2}}{16 \pi^{2}}\left(\bar{s} \gamma_{\mu} P_{L} b\right)\left(\bar{\ell} \gamma^{\mu} \gamma_{5} \ell\right)
\end{aligned}
$$

Factorization:

$$
\begin{gathered}
\left\langle\ell \ell K^{*}\right| \mathcal{O}_{i}|B\rangle \sim\langle\ell \ell| j_{\ell}|0\rangle \cdot \underbrace{\left\langle K^{*}\right| j_{q}|B\rangle}_{F F\left(q^{2}\right)_{\leftarrow} \text { Form Factors calculated in LCSR }[\text { AB, Straub, Zwicky }}+\text { Resonances + QCDf corrections } \\
\mathcal{O}_{i}=j_{q} \cdot j_{\ell}
\end{gathered}
$$

arXiv:1503.05534] or LQCD [Horgan et al arXiv:1310.3887]

Naive factorization (leading order): $\langle\ell \ell \pi| \mathcal{O}_{i}|D\rangle \sim\langle\ell \ell| j_{\ell}|0\rangle \cdot \underbrace{\langle\pi| j_{q}|D\rangle}_{F F\left(q^{2}\right)}$ $\mathrm{QCDf}(\mathrm{NLO}):\langle\pi \ell \ell| \mathcal{H}_{\mathrm{eff}}|D\rangle \sim P(s) f f(s)+\overbrace{\phi_{D}}^{\text {LCDA }} \otimes \underbrace{T(s)}_{\text {pert. } \mathrm{QCD}} \otimes \phi_{\pi}+\mathcal{O}\left(\frac{\Lambda_{Q C D}}{m_{c}}\right)$

At LO in α_{s} :

- Annihilation

Q: possible insertion of a virtual photon line.

At NLO in α_{s} :

- Spectator Scattering

- Form Factors

Observables: What is P_{5}^{\prime} ??

$$
\frac{d^{4} \Gamma}{d q^{2} d \cos \theta_{l} d \cos \theta_{K^{*}} d \phi}=\frac{9}{32 \pi} I\left(q^{2}, \theta_{l}, \theta_{K^{*}}, \phi\right)
$$

\leftarrow Differential Decay rate

$I_{1}^{s} \sin ^{2} \theta_{K}+I_{1}^{c} \cos ^{2} \theta_{K}+\left(I_{2}^{s} \sin ^{2} \theta_{K}+I_{2}^{c} \cos ^{2} \theta_{K}\right) \cos 2 \theta_{l}+I_{3} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \cos 2 \phi$
$+I_{4} \sin 2 \theta_{K} \sin 2 \theta_{l} \cos \phi+I_{5} \sin 2 \theta_{K} \sin \theta_{l} \cos \phi+\left(I_{6}^{s} \sin ^{2} \theta_{K}+I_{6}^{c} \cos ^{2} \theta_{K}\right) \cos \theta_{l}$
$+I_{7} \sin 2 \theta_{K} \sin \theta_{l} \sin \phi+I_{8} \sin 2 \theta_{K} \sin 2 \theta_{l} \sin \phi+I_{9} \sin ^{2} \theta_{K} \sin ^{2} \theta_{l} \sin 2 \phi$

$$
\begin{aligned}
& S_{i}^{(a)}=\left(I_{i}^{(a)}+\bar{I}_{i}^{(a)}\right) / \frac{d(\Gamma+\bar{\Gamma})}{d q^{2}} \longleftarrow \begin{array}{c}
\text { Set of CP averaged } \\
\text { angular observables }
\end{array} \begin{array}{c}
\text { [Ball, AB et al } \\
\text { arXiv:0811.1214] }
\end{array} \\
& P_{5}^{\prime}=\frac{4}{3}\left[\int_{\pi / 2}^{3 \pi / 2}-\int_{0}^{\pi / 2}-\int_{3 \pi / 2}^{2 \pi}\right] d \phi\left[\int_{0}^{1}-\int_{-1}^{0}\right] d \cos \theta_{K} \frac{d^{3}(\Gamma-\bar{\Gamma})}{d q^{2} d \cos \theta_{K} d \phi} / \frac{d(\Gamma+\bar{\Gamma})}{d q^{2}}
\end{aligned}
$$

Update from Moriond 2019

\%Updated measurement of R_{K} by LHCb [LHCb, arXiv:1903.09252]
\because New measurement of $\mathrm{R}_{\mathrm{K} *}$ by Belle [Belle, arXiv:1904.02440]

Talk by David Straub

Global fits for BSM

Software development and statistical analysis (N Mahmoudi): Need to include RGE running from UV scale to mb (SMEFT): nontrivial issues e.g. operator mixing/large logs. Need automated methods to reliably explore parameter space and tools to recast the constraints from LHC high-pT searches
Link to direct searches for LUV (A Iyer / B Fuks):
e.g. for incl. $\ell^{+} \ell^{-}$measurements, acceptance and reconstruction efficiencies important, to separate 'physical' non-universality, induced by different couplings, from the detector-induced LFET

Future prospects

* Main challenge comes from hadronic effects in QCD: calculation of form factors via LCSR (AB,SDG) or LQCD (see later); additional non-perturbative effects when factorization breaks down due to hadronic (charmonium) contributions to the quark loop mediating the decay.
\% Form factors for the non-resonant channels (e.g. B $\rightarrow \mathrm{K} \pi$) which contribute to the background [Sébastien Descotes-Genon et al arXiv:1908.02267 [hep-ph]].
*Study as many related channels as possible, e.g. baryon decays [S. Descotes-Genon, M. Novoa Brunet, arXiv:1903.00448 [hep-ph]] subject of GDR workshop (b-baryon fest, 14-15 May 2020, IJCLab Orsay) or D $\rightarrow \pi$ ८ [AB, Diogo Boito, Cedric Méaux, to appear] Improve global analyses (Sebastien Descotes-Genon)
\% B decays with $\tau(\mathrm{s})$ in the final state (Exp/theory network in France being established including AB, Damir Becirevic, Jérôme Charles, Sebastien Descotes-Genon) / studying τ decays (Sebastien Descote-Genon, Emi Kou)
\% $\mathrm{b} \rightarrow \mathrm{s} \boldsymbol{\gamma}$ photon polarisation measurement with $\mathrm{B} \rightarrow \mathrm{K} \pi \pi \boldsymbol{\gamma}$ angular distribution (Emi Kou in collaboration with Belle II-LAL, writing MC generator with many kaonic resonances)
\therefore Theory predictions for $\mathrm{B}_{\mathrm{s}} \rightarrow \boldsymbol{\gamma} \ell \ell$ [Diego Guadanoli]
\therefore Non-factorisable contribution to the radiative $\mathrm{B} \rightarrow \mathrm{K}_{\text {res }} \boldsymbol{\gamma}$ (K_res being the kaonic resonance) to compute charm penguin effects to the photon polarisation measurement (Emi Kou in collaboration with D. Melikhov (Moscow) and H. Sazdjian (IJCLab)),

Charged currents-high precision CKM

History of the anomalies part II: Charged Current anomalies

\% B-factory measurements with leptonic τ decays:

- BaBar: 2D fit PRD 88, $072012(2013) \mathrm{R}_{\mathrm{D}}=0.440 \pm$ $0.058 \pm 0.042 \mathrm{R}_{\mathrm{D} *}=0.332 \pm 0.024 \pm 0.018$

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

- Belle: simultaneous 1D fits PRD 92, 072014 (2015) R_{D} $=0.375 \pm 0.064 \pm 0.029 \mathrm{R}_{\mathrm{D} *}=0.293 \pm 0.038 \pm$ 0.015
\% LHCb measurements with muonic τ decays:
$-\mathrm{R}_{\mathrm{D} *}=0.336 \pm 0.027 \pm 0.030$ PRL 115, 112001 (2015)
$-\mathrm{R}_{\mathrm{J} / \psi}=0.71 \pm 0.17 \pm 0.18$ PRL 120, 121801 (2018)]
\therefore Measurements with hadronic τ decays
- Belle R D. $_{\text {D }}$ 1-prong [PRL 118, 211801 (2017)] PRD 97, 012004 ${ }_{(2018)} R_{D *}=0.270 \pm 0.035+0.028$
- LHCb R $\mathrm{D}_{\mathrm{D} *}$ 3-prong PRL 120, 171802 (2018)] PRL 120,

$171802(2018) R_{D}=0.291 \pm 0.019 \pm 0.026 \pm 0.013$

Charged semileptonic processes

* The process $B \rightarrow D^{*} l v$, where $l=e, \mu$ is used to measure the CKM matrix element V_{cb}, as the branching ratio is

$$
\mathrm{BR} \sim\left|\mathrm{~V}_{\mathrm{cb}} \mathrm{FF} \mathrm{GF}\right|^{2}
$$

\therefore In the ratio $\mathrm{R}\left(\mathrm{D}^{*}\right)$, the form factor uncertainty is greatly reduced

* Huge 15\% discrepancy with the SM prediction, tree-level process
\% Need to be sure about SM prediction, i.e. the form factors.

Update from Belle, arXiv:1904.08794, Plot by HFLAV

$$
R_{D^{(*)}}=\frac{\mathcal{B}\left(B \rightarrow D^{(*)} \tau \nu\right)}{\mathcal{B}\left(B \rightarrow D^{(*)} \ell \nu\right)}
$$

* Exclusive-Inclusive discrepancy for V_{cb}
* Lattice at the high q^{2} endpoint
* Extrapolation used to fit data
* BGl vs CLN, need more Lattice results

Global fits including $\mathrm{R}_{\mathrm{D}}{ }^{*}$

The following operators with ii=22 match onto C_{9} and C_{10} at the EW scale:

$$
\begin{aligned}
& {\left[O_{l q}^{(1)}\right]_{i i 23}=\left(\bar{l}_{i} \gamma_{\mu} l_{i}\right)\left(\bar{q}_{2} \gamma^{\mu} q_{3}\right)} \\
& {\left[O_{l q}^{(3)}\right]_{i i 23}=\left(\bar{l}_{i} \gamma_{\mu} \tau^{I} l_{i}\right)\left(\bar{q}_{2} \gamma^{\mu} \tau^{I} q_{3}\right)}
\end{aligned}
$$

\% From semitauonic operators, a LFU RG contribution can be obtained by running above and below the EW scale
*The singlet/triplet Wilson coefficients should be approx. equal to avoid $\mathrm{B} \rightarrow \mathrm{K} v v$ constraints
*Before Moriond best-fit point of the NCLFU and $b \rightarrow s \mu \mu$ data was for vanishing semi-tauonic WCs
\because Including the $\mathrm{RK}^{(*)}$ updates, this point moves to non-zero semitauonic WCs, as required to explain the $\mathrm{RD}^{(*)}$ anomalies, with the agreement improving with the Belle 2019 update, and a pull of $\sim 8 \sigma$

* Only particle which can produce such operators: U1 LQs, transforming as $(3,1) 2 / 3$ under the SM (Loop suppression of B mixing, Loop suppression of $B \rightarrow K v v$, singlet and triplet WCs are naturally equal)

CKM Fitter results 2019

CKMfitter Group (J. Charles et al.), Eur. Phys. J. C41, 1-131 (2005) [hep-ph / 0406184], updated results and plots available at: http: / / ckmfitter.in2p3.fr

Looking closer at V_{ub} and V_{cb}

\% Including (NNLO) uncertainties properly and with more Belle/BelleII data now fits give compatible results. Lattice FNAL-MILC and JLQCD preliminary results for FF ratio/ slope, important constraint on fit. Important also for $R\left(D^{*}\right)$ and $R(D)$.
\% Inclusive result: Theory uncertainties dominant: further calculations in progress with aim to obtain 1% uncertainty, new observables for B factories, Lattice QCD information on local matrix elements is the next frontier

Future Prospects

\therefore Aim to study the ratios linked to $b \rightarrow c$ anomalies: $R_{D_{s}^{*}}, R_{J / \psi}$ and $R_{\Lambda_{b}}$ (B. Blossier)
$\therefore \mathrm{CKM} \mathrm{V} \mathrm{V}_{\mathrm{cb}}$ element determination and new physics effects in $\mathrm{b} \rightarrow \mathrm{c}$ transition (Emi Kou with postdoc, KEK-lattice (JLQCD) + Belle II (Melbourne)) Form factors for particular $b \rightarrow c$ decays, $B \rightarrow$ π and $B_{s} \rightarrow K$ decays in order to extract V_{cb} and V_{ub} (Antoine Gerardin/Benoit Blossier)
\% Improved parameterisations for V_{cb} and V_{ub} to take into account higher order HQET contributions and combine more channels (AB , Laurent, Lellouch)
$\%$ Improved LCSR results for B to π and B_{s} to K form factors (AB)
*Probing meson DAs with B/D/K to $31 v$ (AB, Marc Knecht with Emilie Passemar, Alexey Petrov)
\therefore CKM gamma angle determination and $\mathrm{D} \rightarrow \mathrm{K} \pi \pi$ decay in dispersive method (Emi Kou with B. Moussallam (IJCLab))

LQCD input for flavour physics

Vincent Morenas, Mariane Brinet, Benoit Blossier, Antoine Gerardin, Savvas Zafeiropolous

Progress over last ten years:

\therefore Take into account $u=d$ quarks as well as s and c quarks in the sea (dynamical quarks).
\% We can include, in our simulations, strong and electromagnetic effects of the isospin symmetry breaking.
\% A wide range of observables have been computed (hadron masses, decay constants, form factors, mixing parameters which characterise weak-decay amplitudes, PDFs, quark masses, etc.)
\because As an example, LQCD provides the heavy flavour decay constants for the D, Ds, B and Bs mesons with sub percent precision, and the most precise determination of α_{s}.

Future prospects:

\therefore Study of bottomium states to probe dynamics of the strong interaction and provide constraints for some BSM scenarios.
\therefore Meson distribution amplitudes (DAs), important universal quantities, appearing in many factorization theorems, which allow for the description of exclusive processes at large momentum transfers., e.g. $\mathrm{B} \rightarrow$ $\pi l v, \eta l v$ giving \mid Vubl,$~ B \rightarrow D \pi$ used for tagging, and $B \rightarrow \pi \pi, K \pi, K K b a r, \pi \eta, \ldots$ which are important channels for measuring CP violation.

Anomalous magnetic moments

(g-2) ${ }_{\mu}$ today

$\because(g-2)_{\ell}$, i.e. deviation of gyromagnetic ratio of ℓ with respect to classical value, promising NP search
\% While $\exp /$ th uncertainties close, new Fermilab exp (E989) currently taking data and another planned (E34) at J-PARC in Japan, both will reduce the error by a factor four, i.e. down to 0.15 ppm .
\because Reduction of the theory uncertainties (factor 10) is therefore essential to fully exploit the new experimental results.

* Calculated with impressive accuracy in SM
* Since E821
experiment of the Brookhaven National Laboratory in the early 2000s, 3:5 sigma disagreement theory and exp

$a_{\mu} \times 10^{10}$		
QED 5-loops	11658471.8853 ± 0.0036	Aoyama, et al, 2012
Weak 2-loops	15.36 ± 0.10	Gnendiger et al, 2013
HVP (LO)	692.5 ± 2.7	RBC-UKQCD and FJ17 combined
	693.26 ± 2.46	KNT18
	693.9 ± 4.0	DHMZ19
HVP (NLO)	-9.93 ± 0.07	Fred Jegerlehner, 2017
HVP (NNLO)	1.22 ± 0.01	Fred Jegerlehner, 2017
HLbL	10.3 ± 2.9	Fred Jegerlehner, 2017
	10.5 ± 2.6	Glasgow Consensus, 2007
SM Theory	11659181.3 ± 4.0	
BNL E821 Exp	11659208.9 ± 6.3	
Exp - SM	27.6 ± 7.5	

Theoretical challenges

Theory uncertainty limited by two hadronic contributions: hadronic vacuum polarization (HVP) and hadronic light-by-light scattering (HLbL). 4 French teams significantly contributed to the calculation of both and more work ongoing.

HVP contribution:

: Pheno: dispersion relations applied to data for the cross section of $\mathrm{e}+\mathrm{e}-$ to hadrons. (most precise and to improve with data e.g. from Belle II.)
: LQCD: 1st complete result BMWc 17), uncertainties ~ 6 times> pheno.

MUonE project: proposes to determine the HVP contribution by directly measuring the eff. EM coupling in spacelike region via e scattering data.

HLbL contribution:

: Model based calculation computing contributions of individual hadronic states. (Knecht, Nyffler 2002)
\therefore More recently, using LQCD (aim at $\mathrm{O}(10 \%)$ uncertainty) (N. Asmussen, E. H. Chao, A. Gerardin, J. R. Green, R. J. Hud, spith, H. B. Meyer and A. Nyffeler,arXiv:1911.05573 [hep-lat].)

Latest news from BMWc

$\therefore B M W c^{\prime} 17$ consistent with both pheno and "no new physics" scenario
$\because B M W c^{\prime} 20$ clearly agrees with SM and disagrees with pheno result

Improving the uncertainty on HVP needs:
: advanced noise reduction techniques
\because the inclusion of electromagnetic and strong-isospin breaking effects

* much larger statistics, simulations in larger volumes

Additional themes in LQCD

Vincent Morenas, Mariane Brinet, Benoit Blossier, Savvas Zafeiropolous
\% Hadron structure: PDFs and generalised GPDFs and meson DAs will be under deep investigation in future experiments at J-Lab (JLEIC). Lattice results in regions complementary to that accessible via exp.
\% Neutron EDM: Upper bound $\left|\mathrm{d}_{\mathrm{n}}\right|<3 \quad 10^{-26} \mathrm{e} \cdot \mathrm{cm}$ (90% C.L.) stringent constraint on NP. In SM, mediated by the strong CP-violating term/topological charge. Estimates from the lattice challenging but good hope to remain competitive with respect to the new experiment led at nEDM@PSI.
\because Higgs Physics and PDFs: for hadronic initial states (e.g. pp), a complete high-precision determination of the PDFs, is crucial for measurements e.g. of the Higgs sector, multi-TeV SM/BSM cross sections.
\because Algorithmic aspects: large vol. simulations need extremely large computer time, ($\sim \mathrm{O}\left(10^{8}\right)$ core hrs) on Tier-0 and Tier-1 high-performance systems. Developing new paradigms is potentially mandatory to optimize the cost of acceptance/rejection test in hybrid Monte-Carlo algorithms.

Summary

\therefore Neutral currents searches for BSM: Anomalies, global fits, deeper understanding of related uncertainties, related channels, tau physics
: Charged currents / high precision CKM: Anomalies and related ratios on the Lattice, improved determinations of Vcb and Vub (Lattice form factors/new parameterisations)
$\because(\mathrm{g}-2)_{\ell}:$ HPV (lattice-new result from BMWc-and pheno), HLbL...
\% Further Lattice QCD activities: PDFs, nEDM, algorithmic aspects

Observables and Sensitivity to Wilson Coefficients and Fits

\% Angular observables in $B \rightarrow K^{*} \mu^{+} \mu^{-}$ (CDF, LHCb, ATLAS, CMS)
$\because \mathrm{BR}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)(\mathrm{CDF}, \mathrm{LHCb}, \mathrm{CMS})$
$\therefore \mathrm{BR}\left(B \rightarrow K \mu^{+} \mu^{-}\right)(\mathrm{CDF}, \mathrm{LHCb})$
$\therefore \mathrm{BR}\left(B_{s} \rightarrow \phi \mu^{+} \mu^{-}\right)(\mathrm{CDF}, \mathrm{LHCb})$
$\because B_{s} \rightarrow \phi \mu^{+} \mu^{-}$angular observables (LHCb)
$\therefore \operatorname{BR}\left(B \rightarrow X_{s} \mu^{+} \mu^{-}\right)$(BaBar)
Aebischer, Kumar, Stangl, Straub, arXiv:1810.07698

Decay	$C_{7}^{(1)}$	$C_{9}^{(1)}$	$C_{10}^{(1)}$	$C_{S, P}^{(1)}$
$B \rightarrow X_{s} \gamma$	X			
$B \rightarrow K^{*} \gamma$	X			
$B \rightarrow X_{s} \ell^{+} \ell^{-}$	X	X	X	
$B \rightarrow K^{(*)} \ell^{+} \ell^{-}$	X	X	X	
$B_{s} \rightarrow \mu^{+} \mu^{-}$			X	X

Further checks: NP or QCD?

\% Fit resonance contribution to e+e- data [Lyons and Zwicky arXiv:1406.0566]

* Breit-Wigner description of resonances fit to hadronic decays [Blake et al arXiv:1709.03921]
* Long-distance effects in B \rightarrow K*ll from Analyticity [Bobeth, Chrzaszcz,,van Dyk and Virto arXiv:1707.07305,

Chrzaszcz et al, arXiv:1805.06378]

BGL vs CLN

Boyd, Grinstein,Lebed [arXiv:hep-ph/9705252]

$$
z=\frac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}} \quad w=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}}
$$

$$
g=h_{V} / \sqrt{m_{B} m_{D}^{*}}
$$

$$
\begin{aligned}
g & =h_{V} / \sqrt{m_{B}} m_{D}^{*} \\
f & =\sqrt{m_{B} m_{D}^{*}}(1+w) h_{A_{1}} \quad f(z)=\frac{1}{P_{1^{+}}(z) \phi_{f}(z)} \sum_{n=0}^{\infty} a_{n}^{f} z^{n} \\
F_{1} & =(1+w)\left(m_{B}-m_{D^{*}}\right) \sqrt{m_{B} m_{D^{*}}} A_{5}
\end{aligned}
$$

$R_{1}(w)=(w+1) m_{B} m_{D^{*}} \frac{g(w)}{f(w)}, R_{2}(w)=\frac{w-r}{w-1}-\frac{\mathcal{F}_{1}(w)}{m_{B}(w-1) f(w)}$.

Three form factors.
Series expansion, impose dispersive bounds on coefficients using unitarity. Construct useful ratios in terms of form factors. Fit to data to obtain V(cb).

Caprini, Lellouch, Neubert [arXiv:hep-ph/9712417] $h_{A_{1}}(w)=h_{A_{1}}(1)\left[1-8 \rho^{2} z+\left(53 \rho^{2}-15\right) z^{2}-\left(231 \rho^{2}-91\right) z^{3}\right]$, $R_{1}(w)=R_{1}(1)-0.12(w-1)+0.05(w-1)^{2}$, $R_{2}(w)=R_{2}(1)+0.11(w-1)-0.06(w-1)^{2}$

Uncertainties from NNLO can be up to 10-20\%. In exp fits never included. At current precision cannot be ignored.

Use HQET+combine bounds from B to D, B to D*, B^{*} to D^{*} and B^{*} to D to obtain shape of form factors and ratios. Theory uncertainties on slope and curvature ignored.

Role of HQET relations in $V_{c b}$ extraction (preliminary Belle data only)

STRONG HQET INPUT
 SMALL $V_{c b}$

Refs.
"practical" CLN: $\quad\left|V_{c b}\right|=38.2(1.5) \cdot 10^{-3} \quad[1,5,6,7,8]$
CLN+QCD sumrule errors $+B \rightarrow D \quad\left|V_{c b}\right|=38.5(1.1) \cdot 10^{-3}$
same + lattice at non-zero recoil $\left|V_{c b}\right|=39.3(1.0) \cdot 10^{-3}$
BGL,HQET,LCSR, $B \rightarrow D$, nuisance $\quad\left|V_{c b}\right|=40.9(0.9) \cdot 10^{-3}$
$\mathrm{BGL}+$ strong unitarity $\quad\left|V_{c b}\right|=40.8(1.5) \cdot 10^{-3}$
BGL + weak unitarity
NO HQET INPUT
$\left|V_{c b}\right|=41.7(2.0) \cdot 10^{-3}$
LARGE $V_{c b}$
[1] [Belle 1702.01521] [2] [Bernlochner Ligeti Papucci Robinson 1703.05330]
[3] [Jaiswal Nandi Patra 1707.09977] [4] [Bigi Gambino Schacht 1707.09509]
[5] [Bigi Gambino Schacht 1703.06124] [6] [HPQCD 1711.11013]
[7] [Bernlochner Ligeti Papucci Robinson 1708.07134] [8] [Grinstein Kobach 1703.08170]

Effect of HQET on R1 and R2

* Fits for R2 in good agreement with HQET+QCDSR.
* Same goes for R1 with LCSR. R1 without LCSR well compatible with HQET only at small / moderate recoil. At large w clear tension with both HQET and LCSR.
* Fit without LCSR appears somewhat disfavored.

Tree-level solutions

With help from David Straub

\therefore Only particle which can produce such operators: U_{1} LQs, transforming as $(3,1)_{2 / 3}$ under the SM

- Loop suppression of B mixing
- Loop suppression of $B \rightarrow K \nu v$, singlet and triplet WCs are naturally equal
\therefore Vector leptoquarks require a UV completion. Several model building attempts are underway, most based on Pati-Salam (PS) gauge group, $\mathrm{SU}(4) \times \mathrm{SU}(2) \times \mathrm{SU}(2)$
- Composite PS leptoquark Barbieri et al. 1611.04930, Barbieri and Tesi 1712.06844
- $\operatorname{SU}(4) \times S U(3) \times S U(2) \times U(1)$ Di Luzio et al. 1708.08450, cf. v2 of Assad et al. 1708.06350
- PS with additional vector-like fermions Calibbi et al. 1709.00692
- Three-site PS Bordone et al. 1712.01368
- PS in warped extra dimensions Blanke and Crivellin 1801.07256

Summary of V_{ub} and Future Prospects

\qquad

HFLAV 2016 (FLAG+Bharucha 2012,BCL)			
FLAG 2016			
Fermilab/MILC 2015			
RBC/UKQCD 2015			
$B \rightarrow \rho \\| v$			
Bharucha et al. 2016			
$B \rightarrow \boldsymbol{\omega} \\|$			
Bharucha et al. 2016			
$\Lambda_{b} \rightarrow \mathrm{plv}$			
Detmold et al, 2015			
HFLAV 2016 (combined fit excl B)			
Indirect Fits			
UTfit (2017)			
CKMfitter (2016,3 $)$			
$\begin{array}{lll}2.0 & 2.5\end{array}$	3.5	4.0	

Summary:

2012 NNLO calculation $\mathrm{B} \rightarrow \pi(\mathrm{AB})$
2014 Bayesian uncertainty analysis for the $B \rightarrow \pi$ form factor (Imsong, Khodjamirian, Mannel van Dyk)

2015 Update for B to V form factors (AB, Straub, Zwicky)
2017 Calculation of f_{+}and f_{T} for $\mathrm{B}_{(\mathrm{s})}$ to K form factors (Khodjamirian and Rusov)

Future Prospects:

- Find higher twist (i.e. 5,6) terms in the factorizable approximation are small, but still would be good to check the full NNLO twist 2 and twist 3 contributions
- Bayesian uncertainty analysis of all $B \rightarrow P, D \rightarrow P$ LCSRs (for B $\rightarrow \pi$ in [Imsong,AK,Mannel, van Dyk (2013)])
- $\mathrm{B}_{\mathrm{s}} \rightarrow \mathrm{Kl} \nu$ measurement at $\mathrm{LHCb} / \mathrm{Belle}$ II
- Future Belle-2 data on the q^{2}-shape of $B \rightarrow \pi l v$ will provide additional constraints on the DA parameters

