

Software and computing contributions for HK October 17th 2019

Current contributions and efforts

Computing: 20 M hours.CPU \rightarrow variable quota fraction is used (<50%)

Storage at CC-IN2P3: 59 TB →suppression of some old files Locally stored prod. files: 27 TB

 \rightarrow "free and share resources" policy \rightarrow As more space is efficiently share

LLR/LPNHE meeting October 17th 2019 — Software and Computing contributions

\rightarrow As more space is efficiently shared/used, requests for space will be easier!

WIDTOL / TODI DITING?

2

Expected state by the end of T2K LPNHE

Integration of computing resources into DIRAC \rightarrow sharing computing time (progressively) to meet production needs \rightarrow share storage for production files (>50% current storage)

Request for more storage \rightarrow additional 73TB granted for storage of computing results

New computing model (thanks to JENNIFER-II) - Docker/Singularity image-based job submission for production (More) tools to facilitate user DIRAC experience \rightarrow unique entry point for job submission Hyper-Kamiokande

LLR/LPNHE meeting October 17th 2019 — Software and Computing contributions

- \rightarrow Already used by PNNL people for Belle-II/Project 8 (maybe others)

Model description: <u>here</u> **Resources shared via DIRAC**

Software shared via CVMFS

iRODS for data transfer between clusters

Very similar to Belle-II's Similar issues with other experiments (LSST, CTA...) \rightarrow obvious synergies

Hyper Kamiokande computing model LPNHE

SORBONNE Hyper Kamiokande computing needs LPNHE

Resources shared over 17 countries

First 10 years of operations: \rightarrow 25 PB (data + MC – mostly FD) →8800 MCPU.hours

(minimal with one copy of each file)

Each T1 site don't hold all data

 \rightarrow replica on at least one T1 site and one T2 site

 \rightarrow cloud computing?

Dirac for Data management system

	Construction (MC, 7y)		
Detector	CPU hrs	Storage (TB) (One copy of each file)	
Hyper-K (FD)	20M	500	
INGrid	0.13M	7	
ND280	19.2M	2250	
IWCD	97M	52	
Flux	KEKCC	15	
Total	133.43M	2,824 (~2.8 PB)	

	Data Taking (Data, 10y)	Data Taking (MC, 10y)	
Detector	Data Storage (TB) (One copy of each file)	MC CPU hrs	MC Storage (One copy of e
Hyper-K (FD)	18,300 + 140 reduced	25M	500
INGrid	226	0.51M	26
ND280	669	42.2M	4,950
IWCD	620	684M	367
Flux	N/A	KEKCC	15
Total	19,815 (~19.9 PB)	751.71M	5,858 (~5.9

CC-IN2P3 is already Tier1 for LHC (WLCG) \rightarrow infrastructure available, need resources Could we become Tier 1 for HK?

 \rightarrow Conveners think this would be appropriate...

Use of tape for long term storage: virtually very very large! \rightarrow Build-up requests for storage needed by production

Setup and maintain tools for job submission and data managements \rightarrow DIRAC file catalog, web interface, job submission for production... \rightarrow A lot of expertise within IN2P3 (DIRAC core developers etc) \rightarrow Useful for other IN2P3 experiments

Possible contributions to HK computing LPNHE

- \rightarrow Store low-rate access data on tape (raw data/data acquired during construction?)

LLR/LPNHE meeting October 17th 2019 — Software and Computing contributions

Backup

7

File replication details

Numbers of file copies					
Detector	Construction (MC)	Data Taking (raw data)	Data Taking (MC/RD		
HK FD	Tier1 _{HK} + n Tier2 _{HK}	Tier0 _{HK} + 2 Tier1 _{HK}	Tier1 _{HK} + n Tier2 _{HI}		
INGrid	$Tier1_{IN} + n Tier2_{IN}$	$Tier0_{IN} + 2 Tier1_{IN}$	$Tier1_{IN} + n Tier2_{IN}$		
ND280	$Tier1_{ND} + n Tier2_{ND}$	Tier0 _{ND} + 2 Tier1 _{ND}	$Tier1_{ND} + n Tier2_{ND}$		
IWCD	$Tier1_{WC} + n Tier2_{WC}$	Tier0 $_{\rm WC}$ + 2 Tier1 $_{\rm WC}$	Tier1 _{WC} + n Tier2 _W		
Flux	$Tier1_{\mathrm{Fl}}$ + $n Tier2_{\mathrm{Fl}}$	Tier0 $_{\rm Fl}$ + 2 Tier1 $_{\rm Fl}$	Tier1 _{Fl} + n Tier2 _{Fl}		

Table 2: File replication for the Hyper-K raw data, RDP and MC production for the construction and data taking periods. Tier0 sites are in Japan, whilst Tier1 and Tier2 are overseas. Different labels indicate the tiers for the different detectors.

