
OAuth based AuthN/
AuthZ in DIRAC

A.Lytovchenko,
CPPM-IN2P3-CNRS, Marseille,

19 Nov 2019, Lyon

Outline

2

}  Current DIRAC security framework
}  Enabling DIRAC to use OAuth AAI
}  OAuthDIRAC extension
}  OAuthManager service
}  X509 Proxy Providers
}  Username as unique id
}  Statuses of groups
}  Dinamic Registry
}  Cookies for authetication
}  Status and plans
}  Conclusions

X509 based security

3

}  DIRAC is using X509 certificates for user authentication

}  Certificate proxy delegation protocol is used to pass the user
credentials to remote components performing operations on
behalf of the users

}  User rights are determined by the group membership
encoded in the DIRAC proxy extension

}  The ProxyManager stores long-living user proxies in the
ProxyDB and serves short (limited) proxies to the
components operating on behalf of the user

DIRAC and VOMS

}  DIRAC users are members of at least one VO
managed by a VOMS service

}  User rights defined in VOMS as groups and roles
are translated into DIRAC group membership
}  VOMS synchronization with VOMS2CSAgent

}  DIRAC proxies can be dressed with VOMS
extensions to access external grid services
}  VOMS and DIRAC proxy extension coexist in the same

proxy

4

X509 -> OIDC/OAuth

}  Using X509 certificates is complicated for the end-
users
}  Complex issuing procedure, yearly renewal, installation in multiple

places with a format conversion, loading in browsers, etc, etc
}  Users of many communities do not have access to Certification

Authorities issuing X509 certificates

}  Need for a new non-X509 security infrastructure
}  Industry standard
}  Widely accepted

}  OAuth2.0 + OIDC is the suitable choice
}  Although not a single one

5

OAuth/OIDC/SSO

6

}  OAuth 2.0 is the industry-standard delegation
protocol for conveying authorization decisions across
a network of web-enabled applications and APIs

}  Open ID Connect – is an identity layer on top of the
OAuth 2.0.
}  allows Clients to verify the identity of the End-User based on the

authentication performed by an Authorization Server

}  Single sign-on (SSO) is an authentication process
that allows a user to access multiple applications
with one set of login credentials.

SSO solutions

7

}  There are multiple examples
of SSO solutions

}  The EGI Check-in service
enables access to EGI
services and resources using
federated authentication
mechanisms
}  A hub between federated Identity

Providers (IdPs) and Service
Providers (SPs) that are part of
EGI

DIRAC support for
SSO authentication

}  Authenticate DIRAC users with the help of an
external Authentication server
}  E.g. delegate it to EGI Check-In

}  Get user profile information and eventually register
users in DIRAC for supported VO’s
}  Put users into DIRAC groups corresponding to the user profile
}  Similar to the procedure of synchronization with VOMS

}  Ensure provisioning of X509 certificate proxies to
be used for internal DIRAC client-server
communications and for access to external services

8

New DIRAC “SSO” components

}  OAuthDIRAC extension
}  OAuthManager service + OAuthManagerClient + OAuthDB

}  Generates authentication URL
}  Stores information on the user’s OAuth session (session ID, AccessToken,

RefreshToken)
}  AuthHandler in the WebApp framework

}  Providing OAuth callback http URL
}  REST interface for the command line authentication

}  In WebAppDIRAC
}  Authentication based on interaction with OAuthManager service
}  User interface elements – login menu

}  In DIRAC
}  Dynamic Registry

9

Authentication flow simplified

10

OAuthManager
authorization url

Identity Provider

au
th

or
iz

at
io

n
co

de

DB

tokens
user profile
proxy

1

2

3

4

5

6

Proxy Provider

Client part(browser or console)

DIRAC server with extensions:
- OAuthDIRAC
- WebAppDIRAC

Identity Provider with OAuth2
athentification(CheckIn, Google)

Proxy Provider through OAuth2
athentification(RCAuth)

ProxyManager

proxy

Setting up the
OAuth components

11

}  Install the DIRAC server with the extensions:
}  WebAppDIRAC
}  OAuthDIRAC

}  Configure and start the OAuthManager service

}  Configure and start the HTTP endpoints
}  AuthenticationHandler, AuthHandler, ConfigurationHandler in the

WebApp/Tornado

}  Register the client in OAuth2 authentication provider,
e.g. Check-In or Google
}  Set authorization flow
}  Set redirect_uri(the OAuthManager HTTP endpoint in our case)
}  Set maximum of posible refresh token live time

configuration

12

}  Set Identity Providers with some options in /Resources/IdProviders section:
{
 CheckIn

 {
 Type = OAuth2

 issuer = https://aai-dev.egi.eu/oidc
 client_id = 2C7823B4-wqenknsadljdas2-E5D06D955809

 client_secret = 732h9d0dn-3_CRcUf6paEMejjojAqQz5A
 Syntax
 {

 }
 proxy_provider = RCAuth

 }
}

configuration

13

}  Set Proxy Providers with some options in /Resources/ProxyProviders section:

{

 RCAuth

 {

 ProxyProviderName = RCAuth

 ProxyProviderType = OAuth2

 issuer = https://masterportal-pilot.aai.egi.eu/mp-oa2-server

 client_id = myproxy:949241khasdkhkhk358d4981d

 client_secret = ISh-Q32xh2pQc7rAlB_2qGVcQVNMf

 max_proxylifetime = 864000

 proxy_endpoint = https://masterportal-pilot.aai.egi.eu/mp-oa2-server/getproxy

 }

}

configuration

14

}  Set OAuthManager http endpoint in /Framework/Production/Services section:
{

 URLs

 {

 OAuth = dips://ce-emi.bitp.kiev.ua:9244/Framework/OAuth

 OAuthAPI = https://ce-emi.bitp.kiev.ua:9943/oauth2

 }

}

}  Add /WebApp/TypeAuths section in the DIRAC portal configuration file to describe auth types that will be
shown on the portal taskbar:

TypeAuths

{

 CheckIn

 { }

 Google

 { }

}

Web Portal authentication

15

Command line authentication

16

Proxy Providers

}  ProxyProvider is a new Resource type for services
generating X509 certificate proxies on demand

}  Current implementations
}  DIRAC CA proxy provider – generates user proxy from a

certificate signed by the DIRAC CA
}  RCAuth proxy provider

17

RCAuth

18

}  RCauth.eu is a Research and Collaboration
Authentication CA Service for Europe

}  To obtain proxy certificates from the RCauth.eu
online CA do not directly contact the RCauth CA,
but use an intermediate service, a so-called Master
Portal where you must register your client. Master
Portal is an OpenID Connect Provider, with an
integrated protected endpoint for obtaining proxy
certificates.

~12
hours

RCAuth

19

OAuthManager

Master Portal

Delegation
server

DB

to
ke

ns

ge
tc

er
t

Online CA

IdP SSO eduGAIN

EGI

ELIXIR

SURFconext

~11
days

~11
days

~11
days

EEC

OIDC flow 1

ge
tp

ro
xy

to
ke

ns

OIDC flow 2

Proxy renewal

}  We have to have valid proxy in the ProxyManager to
perform operations on behalf of the user

}  With X509 certificates stored proxies are renewed
once per year by the users

}  Renewal of proxies provided by the DIRAC CA
}  Just ask for the new proxy

}  Renewal of RCAuth proxy is another complex flow
using the OAuth AccessToken (and most likely
RefreshToken) stored in the OAuthDB
}  To be done

20

Proxies in the ProxyDB

}  Proxies are stored in DIRAC now with embedded DIRAC
group extension

}  Proxies returned by external proxy providers does not
contain this extension

}  Switching to storing only proxies without DIRAC
extension
}  The extension will be added on the fly whenever the proxy

delegation will be requested
21

username as unique id

22

}  To do any action in DIRAC you must be username@group, this is
sufficient for initialization. But in some cases, userDN is used instead
of the username as a unique identifier(ProductionSystem,
TransformationSystem for example).

}  If user have a few or none(like dirac_user group users) DNs, DIRAC
take first from list or deny accsess.

}  So, using username as unique identificator everywhere will make to
use any number or absence of DNs, and simplify sessions/tokens(or
some else access) implementation process instead certificates.

}  DN can be found for username@group by using
Registry.getDNForUsernameInGroup method.

CREATE	TABLE	Productions(
		ProductionID	INTEGER	NOT	NULL	AUTO_INCREMENT,	
		ProductionName	VARCHAR(255)	NOT	NULL,	
		Description	LONGBLOB,	
		CreationDate	DATETIME,	
		LastUpdate	DATETIME,	
		AuthorDN	VARCHAR(255)	NOT	NULL,	
		AuthorGroup	VARCHAR(255)	NOT	NULL,	
		Status	CHAR(32)	DEFAULT	'New’,	
		PRIMARY	KEY(ProductionID),	
		INDEX(ProductionName)	
)	ENGINE	=	InnoDB	DEFAULT	CHARSET	=	utf8;	
	

statuses of groups

23

}  In DIRAC portal, menu "groups" show all avaliable
groups, but without status details. If you suspended
in some VOMS VO that has been used by some
group in list, you must know about it.

}  So, when opened list groups, status of this groups
avalible also, like as ‘You suspended’ or ‘Need
upload certificate to work with this group’.

Dynamic Registry

24

}  Registry as a helper client of the ConfigurationService, contains
dynamic information such as users in a group, suspended status, etc.

}  With the implementation of ID providers, user profile information
has emerged, which can be remotely changed(dynamic information).
}  To update user information one needs to look for changes, modify the

CS(mark which ID provider made modification) and update the CS for
all clients accessing the new information. There is a risk of configuration
version confusion.

}  So, Registry dynamic information can be stored as cache.

}  User information that returned from Identity Providers, stored in
OAuthManagerClient as CacheDict and if this class is not
implemented Registry will not use it.

}  VOMS VOs users information are stored in ProxyManagerClient as
CacheDict and replicated to a temporary file. All VO admin proxies
are stored here, it helps to update information by VOMS API.

dynamic Registry

25

OAuthManagerService ProxyManagerService

CleanProxies:
UserDN
Pem
ExpirationTime

Sessions:
ID
Session
Status
Provider
Tokens..
LastAccess

Registry

AuthDB

ProxyDB

Periodic task: VOMS VO Admin request

VOMSesUsersCache:

<VOMSVO>: { <User DN>: {
 VOMSRoles: [<VOMS roles>],
 SuspendedRoles: [<suspended roles>], ... } }

OAuthManagerClient

Periodic task: IdP users profile request

IdPsIDsCache:

<ID>: { Providers: [<identity providers>],
 <identity provider>: [{<sessions number>: { <tokens> }}, …],
 DNs: [<DN>: { ProxyProvider: [<proxy providers>],
 VOMSRoles: [<VOMSRoles>], … }] }

ProxyManagerClient

VOMSesUsersCache

VOMS API

IdPsCache

Groups:
Users
DNs
Properties
VOName
VOMSRole

Users:
IDs
DNs

CS

IdP(CheckIn, Google..)

Services use
Registry

Import to use cache Import to use cache

Cookies for authentication

26

}  There exist several methods for authentication such
as CheckIn or Certificate. When user chooses
authentication method, DIRAC stores cookie (in
console case it will be stored in /tmp/
cache_u<UID>):
}  Current authentication type as {'AuthType’: <IdP name>}
}  If authentication is success, session information will added

as {<IdP>: <session id>}

}  Cookies will be used for authentication through
https – future DIRAC client/server protocol

Conclusions

}  There are many good reasons to replace the X509
based security framework by the one using OAuth/
OIDC/SSO technologies

}  The support of the OAuth/OIDC/SSO in DIRAC is
implemented and demonstrated to work with the
DIRAC4EGI service – Web Portal and command line
client

}  On demand X509 proxy generation is enabled with
various proxy providers including the RCAuth service

27

