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Limits of non linear effects in Si dielectric, at e- 8MeV [D. Cesar, 2018]

Laser intense fields 4+ breakdown strength of dielectric =
DLAs outperform standard acceleration smemne
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Then several major improvements : High fields,
tremendous compacity associated to low cost structures
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A first stage of a future photonic collider :
e- source

P Bermel, et al, "Summary o the
Dielectric Laser Accelerator Workshop,"
NIM-A 734, 51-59 (2014).

DLA Applications: Linear Collider

i
‘concept for 1 DLA
accelerator structure

\ (E. Peralta)
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project :
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PERFORMANCE OBJECTIVES OF THE

INTEGRATED SOURCE

Table of typical and significant parameters

Parameter Value Comment

Overall length 1mm

Dielectric Si(fused), Al203,CaF2

DLA Grating pitch  from 250nm to 2.5um, more...  Apitch = Mharmonic 3
FEA population 1000

Beam entrance < lpum

Graphene sheet single layer equivalent 1000 emit
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PERFORMANCE OBJECTIVES OF THE

INTEGRATED SOURCE

Table of typical and significant parameters

Charge/bunch

PrF of the Burst
Macro Pulses

Initial Eq at first stage
Energy dispersion AE,
Emittance (flat beam)
Coherencelengthy pev
Polarisation

Output Energy
Dephasing length
Vacuum

30e— < Q < 0.17C
50MHz < PrF < 3GHz
1kHz
30 < Ey < 50keV

ox = 500nRad,o, = 5nRad

<= 1MeV
6/1m
10°< P <1070

Laser 2um, 10GV//,
High P with carbon
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PERFORMANCE OBJECTIVES OF THE

INTEGRATED SOURCE

Table of typical and significant parameters

Parameter Value Comment

Wavelength 800nm < A < 10um visible LEDs, 1.5um ar
Spot size 10mum

Duration FWHM 3 < FWHM < 100fs

PrF 0.1Hz — 80MHz might increase

Pulse Energy 160nJ[Breuer, 2013] — 200p:J might decrease
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First studied FE (Field Emitter)

P. Hommelhoff, Erlangen Univ.
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Il [-ic|d Emitter Arrays (FEASs)
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20 nm
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Silicon FEA
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Coming to new avenues? ...

Graphene N-layers, [Novoselov, 2009]
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Other examples

A variety of “dielectric laser-driven
have been proposed...

accelerators” (DLA)

o oan

other examples
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A first principle

1428 1425

Patent from MIT /Keithley, mars 2019.
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International View
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Scientific collaborations / Exercise of planning

Nom 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032
[FEAPHYSIC STUDIES
FEA materials physics studies
material topologies/quantum yield
thermal evacuation
Emittance
laser coupling
EM fields diagrams
transport
stochastic emittance and charge
[FEAPROTOTYPING

FEA definition

realization

test/measure of entrance Beam
DLA

geometry and coupling
definition of a multi stage 1MeV
realization
test without FEA
[LMeV MODULE
definition of integration FEA/DLA STUDIES
realization FABRICATIONS
test TESTS
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spectroscopy (seam space)
2 Fowler

Designs and simulations
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FOrR FURTHER READING

D. Cesar
High-field nonlinear optical response and phase control in a dielectric
laser accelerator.

Communications Physics number 46, 2018

howpublished =
https://www.nature.com/articles/s42005-018-0047-y

E. England.

Dielectric laser accelerators.

Reviews of modern physics, volume 86, october-december

American Physical Society, 2014.

howpublished =
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.1337

J.L. Babigeon

Femtoseconde electron bunches between FEA photocathode and first

stage of a DLA, Journees electrons libres, Orsay, 2017

howpublished =
https://users.lal.in2p3.fr/jlucbabigeon/files/2013/07/poster_emoins_mars2017.pdf

J. Breuer

PHDThesis : Dielectric laser acceleration of non-relativistic electrons at
a photonic structure

howpublished = https://edoc.ub.uni-muenchen.de/16147/

K. Novoselov

The electronic properties of graphene

howpublished =
http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_

square note


https://www.nature.com/articles/s42005-018-0047-y
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.1337
https://users.lal.in2p3.fr/jlucbabigeon/files/2013/07/poster_emoins_mars2017.pdf
https://edoc.ub.uni-muenchen.de/16147/
http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_2009.pdf
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Internal
Incident Reflection  sa:

Available field for a particle near an illuminated dielectric

Available energy gain and fields with field
reduction [?]

dE _ ﬂeiwff el nzgcost) 1)
ds 442"

So with 8MeV incident e- beam, 7 ~ 16 and a
laser field of 10GV/m gives 625MV /m available.
With a chip of Imm, we can expect a kick of
625MeV.(In fact, for [?], Leg = 21pum)




Dielectric

acceleration and
photonic non-

chip »
module

Complements

Field equations lead to attenuation factor

Particle

Internal
Incident Reflection  sa:

Available field for a particle near an illuminated dielectric

Available energy gain and fields with field
reduction [?]

dE _ ﬂeiwff el nzgcost) 1)
ds 442"

So with 8MeV incident e- beam, 7 ~ 16 and a
laser field of 10GV/m gives 625MV /m available.
With a chip of Imm, we can expect a kick of
625MeV.(In fact, for [?], Leg = 21pum)
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0,00042065
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Complements 00008400

Eield Magnitude
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0.0002100

figure de droite

figure gauche
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distance
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SOME INSIGHT ABOUT GRAPHEN

PHYSICS...MONO AND FEW LAYERS

. ) Graphene is made from the mono(or few properly assembled) atomic layer extracted from graphite. It
Dielectric represents a pure 2D form of an interesting class : »materials with topological charges » ie one can produce
ELGETE Al I NET Ml artificial graphene with many other tricks. But graphene is a beautiful object for Physics !
photonic non- Its hexagonal structure reveals 2 sub networks A and B, with basis vectors a, and by. Computation gives a
Hifom band structure of energy levels (pseudo-spin), generated by

module F(k) =Y ekifi 2

where kj;, Rjj are reciprocal vectors (kR = 2n7) and network vectors. In a quantum description, The band
structure is then given by :

E = t\/3+ f(k) — t f(k) solutions of the Hamiltonian
Complements V3+f fi f
H = —t(3(a},boi +cc) + £ Y (a"a...+ cc...) where concretely

i
[
2

f((k) = 2cos(/(3)kya) + 4cos( VB) kya)cos(gkxa)

a,b are creation and annihilation operators for hoping inside from A to B (t), and inside A (t'). We don't
take real spin o in account. Plotting 2D energy surfaces-fig 12 thanks to f(k), enlight several contact
points, K and K’, localized on edges of BZ. They are solutions of £, = E_ Around these points, the first

order energy writes as : E ~ vgq where kips = K + g and vr = 10°m/s . It is a signature of a
@

relativistic massless fermion, indeed, compared with the classical electron form E =

2ms

aline) Left: Lattice structure of graphenc

e the near]
srillouin zone

from[Novoselov, 2009] citation id

square one
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. . Fourier developpement of operators a,b near K,K' lead to hamiltonian formulation :
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H = —ivpaV (2)
, and 2 spinorial solutions,
o1 1
Vi Kk = M + itk
and a reverse sign of 6 for ¢4 k.

Dirac 2D particles are subject to klein paradox, ie they could tunnel across a square potential
Complements without loss. It can be verified with the continuity relations of spinors across potential barrier As f(k) is not
developped along z, the tunnelling occurs only into xOy, so particularly at the edges

We can meet 2 types of edges, zigzag and armchair (fig 7?) :

configurations of multi layers of

graphene

zigzag and armchair edges

Field Emission and Laser Photofield capacity at edge depends also on Density of States (DOS), which has an intricate
expression. To say it simpler, zigzag edge presents some surface states - armchair should not have it, in present
knowledge - and the armchair emission could be much more important than zigzag one. Graphene sheets are also used
in 2 configuration, Bernal and orthorombique (fig ??). Depending on the configurations, behaviour of electrons may
be -or not- quasi-particle like.

square one



SOME INSIGHT ABOUT GRAPHEN

PHYSICS...MONO AND FEW LAYERS

Dielectric Some remarks :

acceleration and
photonic non-
chip »

module ¢ Field Emission and Photofield will be sensible to DOS and
geometrical configuration (edge/armchair,...)
Complements

2 Emissions will be sensible to the choice of single or multi-layers

s Many variants are possible with that young physics
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HAMAMATSU (i) & Lok Alamos

Complements

yworksror2019  ALEGRO WORKSHOP 2019
CERN 26-29 March

-
.\» o

A‘\_

Interest to engage collaboration to ACHIP

square one
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