Vers l'accélérateur diélectrique : module innovant "on-chip" de source d'électrons intégrée a un étage accélérateur laser

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

DLAs

Dielectric acceleration and photonic »on-chip » module

Jean-Luc Babigeon

CNRS-IJC-In2P3

Laboratoire Irene Joliot Curie

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

Future Colliders in the 10-100TeV range should be huge and costly with standard RF technologies

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

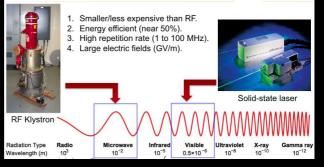
FEAs and DLAs : State of the art

DLAs

Future Colliders in the 10-100TeV range should be huge and costly with standard RF technologies

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon


Dielectric Acceleration, some insights

Past and prospective

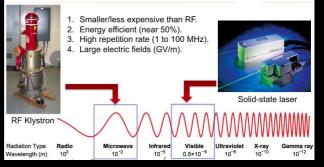
Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Future Colliders in the 10-100TeV range should be huge and costly with standard RF technologies
 To achieve size reduction we need λ reduction and/or bigger accelerating fields (GV/m)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon


Dielectric Acceleration, some insights

Past and prospective

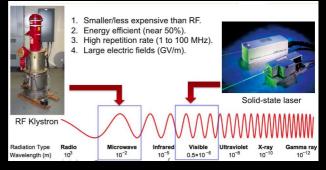
Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Future Colliders in the 10-100TeV range should be huge and costly with standard RF technologies
 To achieve size reduction we need λ reduction and/or bigger accelerating fields (GV/m)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon


Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Future Colliders in the 10-100TeV range should be huge and costly with standard RF technologies
 To achieve size reduction we need λ reduction and/or bigger accelerating fields (GV/m)

 \blacksquare Metal structure reach their strength limit E fields $\sim 150 MV/m$

LASER ACCELERATION IN VACUUM, ESCAPING LAWSON-WOODWARD

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Remind : W-W applies specifically to ... There is no net energy gain for an electron when interacting with a laser field Laser field in vacuum ...

Examples of exceptions are :

 boundaries (laser interaction not in free space/3D vacuum)
 particle velocity not constant (ex sub relativistic) and/or trajectory not in straight line

3 non linearities (ex : plasmas)

 slowing phase velocity of laser field and/or
 creating longitudinal contributing components (dielectric laser acceleration, laser beam forming, vortex...)

LASER ACCELERATION IN VACUUM, ESCAPING LAWSON-WOODWARD

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Remind : W-W applies specifically to ... There is no net energy gain for an electron when interacting with a laser field Laser field in vacuum ...

Examples of exceptions are :

 boundaries (laser interaction not in free space/3D vacuum)
 particle velocity not constant (ex sub relativistic) and/or trajectory not in straight line

3 non linearities (ex : plasmas)

 slowing phase velocity of laser field and/or
 creating longitudinal contributing components (dielectric laser acceleration, laser beam forming, vortex...) Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

DLAs

Metal structures : strength limit E fields <= 150 MV/m-See in comparison, Si strength to laser fields $\sim 10 GV/m$

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

DLAs

• Metal structures : strength limit E fields <= 150 MV/m-See in comparison, Si strength to laser fields $\sim 10 GV/m$

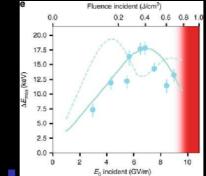


FIGURE - Limits of non linear effects in Si dielectric, at e- 8MeV [D. Cesar, 2018]

(日)(四)(四)(四)(四)(四)(四)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas DLAs

• Metal structures : strength limit E fields <= 150 MV/m-See in comparison, Si strength to laser fields $\sim 10 GV/m$

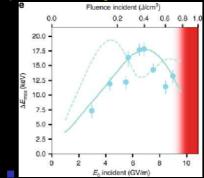


FIGURE - Limits of non linear effects in Si dielectric, at e- 8MeV [D. Cesar, 2018]

Laser intense fields + breakdown strength of dielectric = DLAs outperform standard acceleration commence

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

Feas

DLAs

Dielectric acceleration : recent but not new idea .

LASER LINAC WITH GRATING Y. TAKEDA and I. MATSUI Central Research Laboratory, Hitachi Ltd., Kokubunij, Tokyo, Japan

Received 13 February 1968

Fig. 2. Configuration of electric-field near grating surface.

· ㅁ > 《母 > 《 문 > 《 문 > · 토 = · 이익()

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

Feas

DLAs

Dielectric acceleration : recent but not new idea

LASER LINAC WITH GRATING Y. TAKEDA and I. MATSUI

Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan

Received 13 February 1968

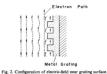
Fig. 2. Configuration of electric-field near grating surface.

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

Dielectric acceleration : recent but not new idea

LASER LINAC WITH GRATING Y. TAKEDA and I. MATSUI Central Research Laboratory, Hitachi Ltd., Kokubunji, Tokyo, Japan Received 13 February 1968

■ Research at SLAC, Concept of "on-chip accelerator"

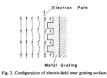
- 日 > 《母 > 《日 > 《日 > 《日 > 《日)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

Dielectric acceleration : recent but not new idea

LASER LINAC WITH GRATING Y. TAKEDA and I. MATSUI Central Research Laboratory, Hitachi Ltd., Kokubanji, Tokyo, Japan Received 13 February 1968

Research at SLAC, Concept of "on-chip accelerator"

· ㅁ > < 쿱 > < 글 > < 글 > · 글 = · 이익이

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

Dielectric acceleration : recent but not new idea

LASER LINAC WITH GRATING Y. TAKEDA and I. MATSUI Central Research Laboratory, Hitachi Ltd., Kokubanji, Tokyo, Japan Received 13 February 1968

Research at SLAC, Concept of "on-chip accelerator"

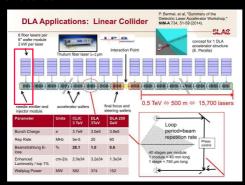
Then several major improvements : **High fields**, **tremendous** compacity associated to **low cost** structures

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

DLAs

A first stage of a future photonic collider : a »photonic » e- source

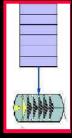


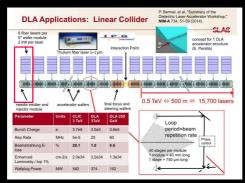
FIGURE – Needle emitter and injector module

もくの 正則 エルマ・カット (四マ・トロッ

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

A first stage of a future photonic collider : a »photonic » e- source

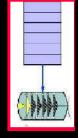


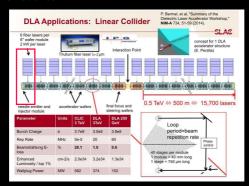
FIGURE – Needle emitter and injector module

Inside the same chip, nanoemitters and first accelerating stage. Because e- like to repell each other... @mmer?

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

A first stage of a future photonic collider : a »photonic » e- source

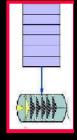


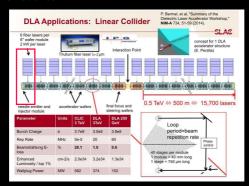
FIGURE – Needle emitter and injector module

Inside the same chip, nanoemitters and first accelerating stage. Because e- like to repell each other... @wtwe?
 Result : distance Emitter-Accelerating stage, typically 200nm ([Babigeon, 2017]) @wtwe?

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

A first stage of a future photonic collider : a »photonic » e- source

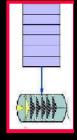


FIGURE – Needle emitter and injector module

Inside the same chip, nanoemitters and first accelerating stage. Because e- like to repell each other... @wtwe?
 Result : distance Emitter-Accelerating stage, typically 200nm ([Babigeon, 2017]) @wtwe?

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Table of typical and significant parameters

(日 / 4 문 / 돈 / 돈 / 1 문 / 4 문 / 4 문 / 4 면 / 4 D / 4 U

Dielectric acceleration and photonic »on- chip » module	Table of typical and significant parameters		
Jean-Luc Babigeon	Parameter	Value	Comment
Dabigeon		CHIP	
Dielectric	Overall length	1mm	
Acceleration, some insights	Dielectric	Si(fused), Al2O3,CaF2	
Past and	DLA Grating pitch	from 250 <i>nm</i> to $2.5\mu m$, more	$\lambda_{ extsf{pitch}} = extsf{m}_{ extsf{harmonic}}eta\lambda$
prospective	FEA population	1000	
Profile of our	Beam entrance	$< 1 \mu$ m	
project : developpement of	Graphene sheet	single layer	equivalent 1000 emit
a missing stage of			
on-chip Linear Collider			
Performance objectives of the integrated source			
FEAs and DLAs : State of the art			

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas DLAs Table of typical and significant parameters

Charge/bunch PrF of the Burst Macro Pulses Initial E_0 at first stage Energy dispersion ΔE_0 Emittance (flat beam) Coherencelength_{1MeV} Polarisation Output Energy Dephasing length Vacuum ELECTRON BUNCH $30e - \langle Q \langle 0.1fC \rangle$ $50MHz \langle PrF \langle 3GHz \rangle$ 1kHz $30 \langle E_0 \langle 50keV \rangle$ $\sigma_x = 500nRad, \sigma_y = 5nRad$

> <= 1 MeV $6 \mu m$ $10^{-9} < P < 10^{-6}$

Laser $2\mu m$, 10GV/High P with carbon

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas Table of typical and significant parameters

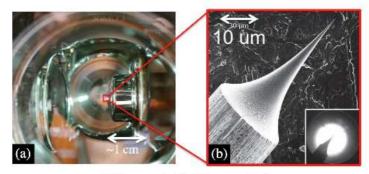
Parameter	Value	Comment
	LASER	
Wavelength	800 $nm < \lambda < 10 \mu m$	visible LEDs, $1.5 \mu m$ and
Spot size	10 <i>mum</i>	
Duration FWHM	3 < <i>FWHM</i> < 100 <i>fs</i>	
PrF	0.1 <i>Hz</i> - 80 <i>MHz</i>	might increase
Pulse Energy	160 <i>nJ</i> [Breuer, 2013] – 200µJ	might decrease

FEAs

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

First studied FE (Field Emitter)

P. Hommelhoff, Erlangen Univ.

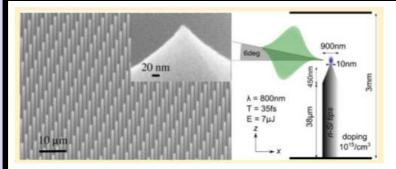
 $\mathrm{FIGURE}-\text{First}\ \text{FE}$

FEAs

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

Field Emitter Arrays (FEAs)

 $\mathbf{FIGURE} - Silicon \; FEA$

FEAs

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

Some +?

FEAs and DLAs : State of the art Feas

Coming to new avenues? ...

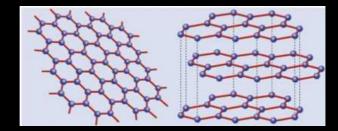


FIGURE – Graphene N-layers, [Novoselov, 2009]

DLAS

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

reas

DLAs

The most studied DLA

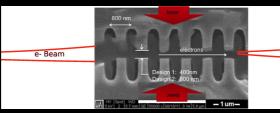


FIGURE - grating

DLAS

Dielectric acceleration and photonic »on-

> chip » module

Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

Other examples

A variety of "dielectric laser-driven accelerators" (DLA) have been proposed...

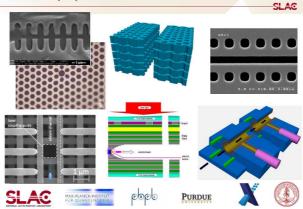


FIGURE – other examples

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 星間 のQの

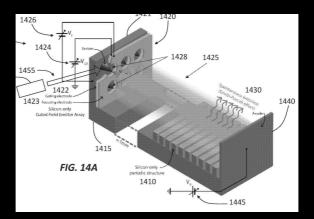
Design 1.0 (2/3D)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

DLAs

A first principle

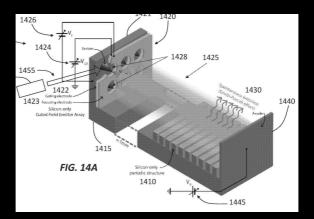
Design 1.0 (2/3D)

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

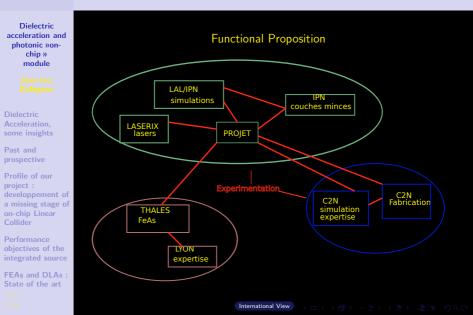
Dielectric Acceleration, some insights

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art


DLAs

A first principle

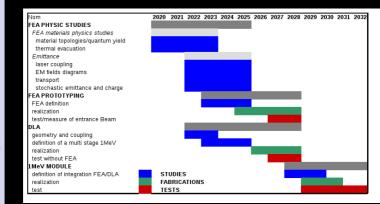
ORSAY LABS : RESOURCES

ORSAY LABS : RESOURCES

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights


Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

Scientific collaborations / Exercise of planning

▲日 ▼ ▲国 ▼ ▲国 ▼ ▲国 ▼ ろんの

VALIDATIONS

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

DLAs

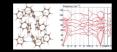
Designs and simulations

VALIDATIONS

Dielectric acceleration and photonic »onchip » module

Acceleration.

Past and prospective


Profile of our project : developpement of a missing stage of on-chip Linear

objectives of the

FEAs and DLAs : State of the art

Designs and simulations

Emission characteristics, abinitio, Electromagnetic fields, PIC simulations

abinitio. Work function, β

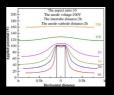


FIGURE - EMfields

ns over the microprotrusion surface at different voltages (Geometric paraters are given in Fig. 1.3: 5 kV, En=1.9:10¹ V/em, jn=1.2:10⁴ A/em²; 2-15 kV, En=5.6:10¹ V/em

2.7:10" A/em2; 3-20 kV, Eu=7.1:107 V/em, ju=3.4:107 A/em2; 4-50 En=108 V/em, ju=6-108 A/em2; 5-100 kV, En=1.2-108 V/em,

ΕM fields

VALIDATIONS

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Design, diagnostics identified SEM, EDS, STEM, Raman Spectroscopy, 2D spectroscopy (seam space) Fowler

Designs and simulations

VALIDATIONS

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art

Designs and simulations

Mesure of the output beam, Test of the module

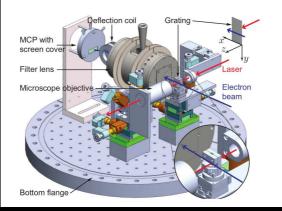


FIGURE - low volume - low equipement investment

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art The end for further reading

FOR FURTHER READING

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Dielectric Acceleration, some insights

Past and prospective

Profile of our project : developpement of a missing stage of on-chip Linear Collider

Performance objectives of the integrated source

FEAs and DLAs : State of the art Feas

DLAs

D. Cesar

High-field nonlinear optical response and phase control in a dielectric
laser accelerator.
Communications Physics number 46, 2018
howpublished =
https://www.nature.com/articles/s42005-018-0047-y

E. England.
Dielectric laser accelerators.
Reviews of modern physics, volume 86, october-december
American Physical Society, 2014.
howpublished =
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.86.1337

J.L. Babigeon

Femtoseconde electron bunches between FEA photocathode and first stage of a DLA, Journees electrons libres, Orsay, 2017 howpublished = https://users.lal.in2p3.fr/jlucbabigeon/files/2013/07/poster_emoins_mars2017.pdf

J. Breuer

PHDThesis : Dielectric laser acceleration of non-relativistic electrons at a photonic structure howpublished = https://edoc.ub.uni-muenchen.de/16147/

K. Novoselov

The electronic properties of graphene howpublished =

http://www.condmat.physics.manchester.ac.uk/pdf/mesoscopic/publications/graphene/RMP_ موسد معد

square one

Jean-Luc Babigeon

Complements

Field equations lead to attenuation

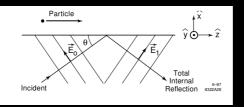


FIGURE - Available field for a particle near an illuminated dielectric

square one

Jean-Luc Babigeon

Complements

Field equations lead to attenuation factor

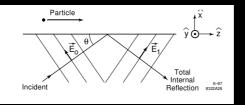


FIGURE - Available field for a particle near an illuminated dielectric

Jean-Luc Babigeon

Complements

square one

Field equations lead to attenuation factor

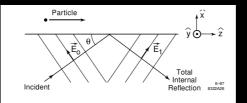


FIGURE - Available field for a particle near an illuminated dielectric

Available energy gain and fields with field reduction [?]

$$\frac{dE}{ds} = \frac{-2ieE_0\frac{n}{\beta}}{\gamma + \frac{m^2}{\sqrt{(n^2\beta^2 - 1)}}} e^{\frac{-\omega\gamma_0}{\gamma\beta c}} e^{i\frac{\omega}{c}nz_0\cos\theta} \qquad (1)$$

So with 8MeV incident e- beam, $\gamma \sim$ 16 and a laser field of 10GV/m gives 625MV/m available. With a chip of 1mm, we can expect a kick of 625MeV.(In fact, for [?], $L_{\rm eff}=21\mu m$)

square one

Jean-Luc Babigeon

Complements

Field equations lead to attenuation factor

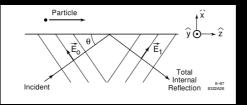


FIGURE - Available field for a particle near an illuminated dielectric

Available energy gain and fields with field reduction [?]

$$\frac{dE}{ds} = \frac{-2ieE_0\frac{n}{\beta}}{\gamma + \frac{in^2}{\sqrt{(n^2\beta^2 - 1)}}} e^{\frac{-\omega x_0}{\gamma\beta c}} e^{i\frac{\omega}{c}nz_0\cos\theta}$$
(1)

So with 8MeV incident e- beam, $\gamma \sim$ 16 and a laser field of 10GV/m gives 625MV/m available. With a chip of 1mm, we can expect a kick of 625MeV.(In fact, for [?], $L_{\rm eff}=21\mu m$)

Jean-Luc Babigeon

Complements

square one

Field equations lead to attenuation factor

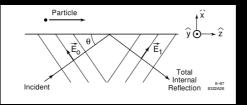


FIGURE - Available field for a particle near an illuminated dielectric

Available energy gain and fields with field reduction [?]

$$\frac{dE}{ds} = \frac{-2ieE_0\frac{n}{\beta}}{\gamma + \frac{in^2}{\sqrt{(n^2\beta^2 - 1)}}} e^{\frac{-\omega x_0}{\gamma\beta c}} e^{i\frac{\omega}{c}nz_0\cos\theta} \qquad (1)$$

So with 8MeV incident e- beam, $\gamma \sim 16$ and a laser field of 10GV/m gives 625MV/m available. With a chip of 1mm, we can expect a kick of 625MeV.(In fact, for [?], $L_{eff} = 21 \mu m$) note : extreme field strength limits for \$1.30GV/m

WHAT HAPPENS WITH A FIELD EFFECT EMITTER IN FREE SPACE?

Dielectric acceleration and square one photonic »onchip » Geometry of the equivalent antenna simulation module gnitude 5.609e-04 Complements 1 FIGURE – figure gauche FIGURE – figure de droite

< □ > < □ > < 三 > < 三 > < 三 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

WHAT HAPPENS WITH A FIELD EFFECT EMITTER IN FREE SPACE?

Bielectric acceleration and photonic won-chip w module.
 Geometry of the equivalent antenna simulation
 Complements

FIGURE – figure gauche FIGURE – figure de droite E field is strongly decreasing after some 100nm distance

WHAT HAPPENS WITH A FIELD EFFECT EMITTER IN FREE SPACE?

Bielectric acceleration and photonic won-chip w module.
 Geometry of the equivalent antenna simulation
 Complements

FIGURE – figure gauche FIGURE – figure de droite E field is strongly decreasing after some 100nm distance

ELECTRONS LIKE TO REPELL EACH OTHER...

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Complements

Electrons like to repell each other....square one

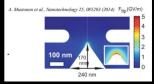
Pintiger Long 5-164 Singler C 1997 Fortister C 1997 Fortister 1245 Fortister 1246	Plating for 1975 Single C (1975) Single C (1975) Particles 19250 Particles 19250 2.100 2.100 2.100 2.100 2.100 1.2204			60
2.1898 - 1.1098 - 1.2788 7.2587 -	2.1898 1.4988 1.2988 7.2587	Sample (49/58) Time 4.811e-801 p	6	4.59e8 4.11e8 3.63e8 3.14e8
	*.079 -			2.18#8 1.69#8 1.21#8 7.25#7
· ·				z 🦛

FIGURE – A naive picture (but some 1st order physics)

A. Mattoinen et al., Nanotechnology 25, 085203 (2014) Figs (GV/m)

$$\label{eq:Figure} \begin{split} \mathbf{Figure} &- A \text{ more real -and} \\ \text{less pessimistic description} \end{split}$$

ELECTRONS LIKE TO REPELL EACH OTHER...


Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Complements

Electrons like to repell each other... square one

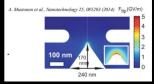
Päättige Korrgy 5,044 Päättige K. (1990) 6,394 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige 1208 2,464 Carter 5,194 1,594 Carter 7,597 2,597	Participe form form		60
2.1898 - 1.4998 - 1.2768 - 7.8567 -	2.1898 - 1.4998 - 1.2768 - 7.8567 -	Sample (49/58) Time 4.811e-801 ps	4,59e8 4,11e8 3,63e8 3,14e8
			2.18#8 1.69#8 1.21#8 7.25#7
i i i			z 🖛

FIGURE – A naive picture (but some 1st order physics)

$$\label{eq:FIGURE} \begin{split} \mathbf{FIGURE} &- A \text{ more real -and} \\ \text{less pessimistic description} \end{split}$$

 Conclusion : We must integrate the electron source very near from the first accelerating stage, << 1µm ([?] typically 200nm

ELECTRONS LIKE TO REPELL EACH OTHER...


Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Complements

Electrons like to repell each other... square one

Päättige Korrgy 5,044 Päättige K. (1990) 6,394 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige K. (1990) 6,194 Päättige 1208 2,464 Carter 5,194 1,594 Carter 7,597 2,597	Participe form form		60
2.1898 - 1.4998 - 1.2768 - 7.8567 -	2.1898 - 1.4998 - 1.2768 - 7.8567 -	Sample (49/58) Time 4.811e-801 ps	4,59e8 4,11e8 3,63e8 3,14e8
			2.18#8 1.69#8 1.21#8 7.25#7
i i i			z 🖛

FIGURE – A naive picture (but some 1st order physics)

$$\label{eq:FIGURE} \begin{split} \mathbf{FIGURE} &- A \text{ more real -and} \\ \text{less pessimistic description} \end{split}$$

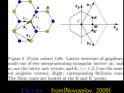
 Conclusion : We must integrate the electron source very near from the first accelerating stage, << 1µm ([?] typically 200nm

Some insight about graphen physics...Mono and few layers

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeor

Complements


Graphene is made from the mono(or few properly assembled) atomic layer extracted from graphite. It represents a pure 2D form of an interesting class : smaterials with topological charges u is one can produce artificial graphene with many other tricks. But graphene is a beautiful object for Physics I Its hexagonal structure reveals 2 sub networks A and B, with basis vectors a_1 and b_1 . Computation gives a band structure of energy levels (pseudo-spin), generated by

$$f(k) = \sum_{ij} e^{k_{ij}R_{ij}} \tag{2}$$

where k_{ij} , R_{ij} are reciprocal vectors ($kR = 2n\pi$) and network vectors. In a quantum description, The band structure is then given by :

$$\begin{split} E &= \pm t\sqrt{3 + f(k) - t'f(k)} \text{ solutions of the Hamiltonian} \\ H &= -t(\sum_{ij}(a_{a,i}^+b_{a,i} + cc) + t'\sum_i(a^+a\ldots + cc\ldots) \text{ where concretely} \\ f(k) &= 2\cos(\sqrt{(3)}k_ya) + 4\cos(\frac{\sqrt{(3)}}{2}k_ya)\cos(\frac{3}{2}k_xa) \end{split}$$

a, b are creation and annihilation operators for hoping inside from A to B (t), and inside A (t'). We don't take real spin σ in account. Plotting 2D energy surfaces-fig 12 thanks to f(k), enlight several contact points, K and K', localized on edges of BZ. They are solutions of $E_{\pm} = E_{-}$ Around these points, the first order energy writes as: $E \sim v_{t}q$ where $k_{tests} = K + q$ and $v_{\tau} = 10^{6}m/s$. It is a signature of a relativistic massless fermion, indeed, compared with the classical electron form $E = \frac{M_{tot}}{M_{tot}}$.

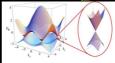


Figure 3 (Color online) Left: Energy spectrum (in units of t) for finite values of t and t', with t = 2.7 eV and t' = 0.2t. Right: zoom-in of the energy bands close to one of the Dirac

2009]

Some insight about graphen PHYSICS...MONO AND FEW LAYERS

Fourier developpement of operators a,b near K,K' lead to hamiltonian formulation :

$$H = -iv_F \sigma \nabla$$
 (2)

and 2 spinorial solutions.

Dielectric acceleration and photonic »onchip »

module

Complements

$$\psi_{\pm,\kappa} = \frac{1}{sqrt(2)} \begin{pmatrix} 1\\ \pm e^{i\theta_k} \end{pmatrix}$$

and a reverse sign of θ_k for $\psi_{\pm K'}$.

developped along z, the tunnelling occurs only into xOy, so particularly at the edges.

Dirac 2D particles are subject to klein paradox, ie they could tunnel across a square potential without loss. It can be verified with the continuity relations of spinors across potential barrier As f(k) is not

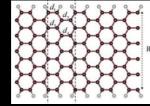

We can meet 2 types of edges, zigzag and armchair (fig ??)

FIGURE - zigzag and armchair edges

Field Emission and Laser Photofield capacity at edge depends also on Density of States (DOS), which has an intricate expression. To say it simpler, zigzag edge presents some surface states - armchair should not have it, in present knowledge - and the armchair emission could be much more important than zigzag one. Graphene sheets are also used in 2 configuration, Bernal and orthorombique (fig ??). Depending on the configurations, behaviour of electrons may be -or not- quasi-particle like. square one

graphene

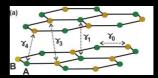


FIGURE - configurations of multi lavers of

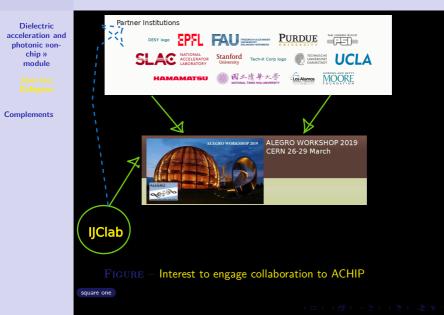
Some insight about graphen physics...Mono and few layers

Dielectric acceleration and photonic »onchip » module

> Jean-Luc Babigeon

Complements

 Field Emission and Photofield will be sensible to DOS and geometrical configuration (edge/armchair,...)


2 Emissions will be sensible to the choice of single or multi-layers

B Many variants are possible with that young physics

square one

Some remarks :

ACHIP COLLABORATION CERN/ALEGRO INITIATIVE

