μ μ hac

The MUonE experiment

Matteo Bonanomi **CMS** CNR[S, LLR-Ecole Poly](http://twitter.com/matteobonanomi)technique @[matteobona](https://www.linkedin.com/in/mbonanom/)nomi

in @mbonanom

LLR Student Seminar LLR, Ecole Polytechnique 08/10/2019

"We are doing something unique here."

–Umberto Marconi

Who am I?

- ***** Matteo Bonanomi, 24yo;
- **.** MSc in Particle Physics at the University of Milano Bicocca on the **MUonE experiment**;
- Second year PhD student at École Polytechnique with the CMS esperiment;
- **. Working on the CMS High Granularity Calorimeter** (HCGAL) beam tests analysis;
- **ROOT User/addicted for my analyses ...**

Who am¹²

- ***** Matteo Bonanomi, 24yo;
- **. MSc in Particle Physics at the University of Milano** Bicocca on the **MUonE experiment**;
- Second year PhD student at École Polytechnique with the CMS esperiment;
- **E** Working on the CMS High Granularity Calorimeter (HCGAL) beam tests analysis;
- ROOT User/addicted for my analyses … **before** my PhD started (20)

In this presentation

- **. The Standard Model in a nutshell;**
- What is the **muon anomaly**: present and future;
- The **MUonE** experiment:
	- *ETheoretical framework;*
	- **Experimental overview and beam tests;**
- Conclusions

Standard Model in a nutshell

"A theory of fundamental interactions in which the electromagnetic, weak and strong interactions are described in terms of the exchange *of virtual particles"*

Standard Model in a nutshell

Le bestiaire Quarks **Bosons** Leptons \bullet Up Electron Down Neutrino Photon Gluon Z° $W²$ W^+ Charm Strange Muon Neutrino Muon **B**

Tau

Top

CERN

Beauty

European Organization for Nuclear Research | Organisation européenne pour la recherche nucléaire

Neutrino Tau

CMS

My PhD

Graviton

Higgs

Standard Model in a nutshell

thesis

European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire

What do they have in common?

My PhD

Matteo in the SM

What do they have in common?

- **Precision frontier;**
- **No collider;**
- **E** Small collaboration O(1e2);

- **High Energy frontier;**
- **At LHC;**
- **E** Large collaboration O(1e3);

Probe physics BSM;

The high energy frontier

Le bestiaire

Quarks

Leptons

- Why particles have mass?
- From 2012 main focus of the **FO** physics at high energy frontier;
- Many precision measurements on Higgs sector ongoing at LHC;
- Possible hints of physics beyond the SM at accelerators;

The precision from the

Indirect evidence of physics beyond the SM can come from the **precision frontier;**

BNL, Mainz;

Flavour factories;

g-2, M2e @Fermilab**;**

"g-2: an uncomfortably lonely search for a crack in the SM" –David W. Hertzog

The g-2 *anomaly* (I)

Magnetic dipole moment of a particle with spin: *e*

2*m*

s

Electron

μ = *g*

- Dirac equation predicts $g = 2$;
- **Due to QED and QCD effects we have** $\mu = (2(1 + a))$ *e* 2*m s*

The g-2 *anomaly* (II)

^a ⁼is referred to as *anomaly. ^g* [−] ²

Electron Muon

 $a_e^{exp} = 1159652180.73(28) \times 10^{-12} \pm 0.24$ ppb a_μ^{exp} Less sensitive to heavier physics

$$
\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \simeq 43000
$$

 $l_{\mu}^{exp}=116592089(63)\times 10^{-11} \pm 0.54$ ppm

Strongly affected by hadronic contributions

The 2 in the SM

 $a_\mu^{SM} \equiv a_\mu^{QED} + a_\mu^{Weak} + a_\mu^{Had}$

: Well known up to 5-loop diagrams; *aQED μ*

: well known at 1-loop, current work at 2-loops; *aWeak μ*

; *aHad μ* = *aH*−*LO ^μ* +*aH*−*HO ^μ* + *aH*−*LbL μ*

Sensitive to mass scales in O(1e2) GeV region: W, Z bosons and possibly **BSM contributions**.

g-2 theory and experiment

E821 experiment @BNL and SM prediction have a longstanding ²²^{3.7}*σ* discrepancy

 $\Delta a_\mu^{exp-SM} \simeq (261 \pm 78) \times 10^{-11}$

g-2 to nail down the 5*o*

Theoretical uncertainty limits the SM prediction. Mostly dominated by **hadronic effects** (in particular **H-LO**)

Experimental uncertainty limited by available statistics. New experiments foreseen at **FNAL** and **J-PARC** (x4 BNL accuracy)

Experimental Property Sections
2006 - Carl Control Control Property Sections
2006 - Carl Control Control Control Control Control Control Control Control Control
2006 - Carl Control Control Control Control Control Control

g-2 to nail down the 5*σ*

Theoretical uncertainty limits the SM prediction. Mostly dominated by **hadronic effects** (in particular **H-LO**)

experimental data as input to improve the computation. **Requirement of** BNL accuracy)

How to measure a_{μ}^{H-LO} (1) *μ*

aH−*LO μ* = (1) *αm^μ* 3*π*) 2 Dispersive approach: $a_{\mu}^{H-LO} = \frac{\mu}{2\pi}K(s)R_{had}(s)$

Rhad(*s*) = *σtot* (*e*+*e*[−] → *had*.) σ ($e^+e^- \rightarrow \mu^+\mu^-$)

µoooc
∩∩∩∩∩

∞

ds

*s*2

 m_π^2

How to measure a_{μ}^{H-LO} (1) *μ*

aH−*LO μ* = (1) *αm^μ* 3*π*) Dispersive approach: $a_{\mu}^{H-LO} = \frac{\mu}{2\pi}K(s)R_{had}(s)$

> *Rhad*(*s*) = *σtot* (*e*+*e*[−] → *had*.) σ ($e^+e^- \rightarrow \mu^+\mu^-$)

2

µoooc
∩∩∩∩∩

∞

ds

*s*2

 m_π^2

²⁰ LLR Students Seminar, 08/10/2019

How to measure a_{μ}^{H-LO} (1) *μ*

- Sets the current precision at 3.7σ ;
- Relies on many **experimental inputs**: BELLEII, BaBar, KLOE... E.
- **Hard to compute** in the low E region due to fluctuations.

How to measure *a* (II) *^H*−*LO μ*

Alternative approach based on *space-like* phase space

integration:

$$
a_{\mu}^{H-LO} \left(\begin{array}{c} \alpha \\ \alpha \end{array} \right) \left(\begin{array}{c} \alpha \\
$$

- **Allows to compute the H-LO contributions in an independent way;**
- Space-like phase space only, no channels interference!
- Depends on **the running of** *αem* **…**

wes, $\alpha_{\rho m}$ is not constant 1/137 \odot

How to measure *a* (II) *^H*−*LO μ*

Alternative approach based on *space-like* phase space

integration:

How to measure *a* (II) *^H*−*LO μ*

1 $dx(1-x)(\Delta\alpha_{had}(t(x)))$

Smooth integral, free from resonances: can be fully **extracted from data;**

Pure *t-like* approach, allows to select channels w/o interference;

B ... but how do we measure $\Delta \alpha_{had}(t(x))$?;

Scattering of **high energy muons** ($E_\mu \simeq 150$ GeV) on atomic μ **electrons** of **low Z target**

2

Pure *t-channel* process with *dσ dt* = $d\sigma_0$ *dt α*(*t*) *α*(0)

μ

Two body scattering with closed kinematics $E_f^e = m_e$ $1 + r^2 \cos^2 \theta_e$ $1 - r^2 \cos^2 \theta_e$

Boosted kin. allows to keep systematics under control

- Systematics under control: same process for both signal and K normalisation region;
- Simulating 2y data taking: 0.3% stat uncertainty on *aH*−*LO μ* H

Correlation between electron and muon angles can be exploited to retrieve elastic scattering events.

Signal region for $\theta_e < 10$ mrad and $E_e > 10$ GeV

: the detector

- **.60 modules: 1 cm Be target + 3 Si trackers;**
- **State of art Si detectors to achieve ~20um resolution;**
- **ECAL and muon chamber for particle ID.**

: facing systematics

Precise measurement of requires knowledge of signal/norm ratio with **10ppm systematic uncertainty** *aH*−*LO μ*

Multiple scattering in thin absorber: need to be known at ~1% (in core region);

- Beam energy knowledge at 0.8% using BMS spectrometer; H
- ***** Tracking uniformity, alignment and angles reconstruction

Beam tests in October 2017 and April 2018 to understand Multiple Scattering effects and to have a first proof-of-concept of the detector

October 2017 beam test @CERN, using UA9 telescope:

1 module tested: 2 upstream + 3 downstream planes

C, Be targets for 2, 4, 8, 20 mm

12,20GeV *e*[−] beams

³¹ LLR Students Seminar, 08/10/2019

: Multiple Scattering

• Multiple Scattering increases with target thickness;

E. Dedicated Geant4 simulation of the apparatus describes at \sim 1% data;

: Multiple Scattering

C: MSC core is gaussian, we can deal with it

B: What do we do with the tails? MSC events end there!

 \blacktriangleright : What do we do with the tails? We fit them!

$$
f(\theta) = f_{telescope}(\theta) * f_{target}(\theta)
$$

Gauss + t-Student

t-Student

- Scattered electron and mu from χ^2 minimisation on downstream planes;
- Delicate to take into account MSC errors. B

Qualitative good agreement between data and simulation for the reconstruction of elastic scattering events!

 : What is the background? We can use Geant4 \geq $-$ to better understand how the $\theta_e-\theta_\mu$ plot gets populated… most of the background comes from e^+e^- pair production!

C: The importance of tracking

In April 2018: new beam test!

u, v planes for discrimination; x,y for tracking **Two targets** to measure independently mu-e events; Si trackers with **40um** (20um in 2017TB); Larger detector arm, up to **15mrad** full acceptance; Upstream **BGO-PMT calorimeter** for PID.

³⁸ LLR Students Seminar, 08/10/2019

In April 2018: new beam test!

Two stations

Worse Si trackers (40um res), **larger** acceptance (12mrad)

In April 2018: new beam test!

Two stations

Worse Si trackers (40um res), **larger** acceptance (12mrad)

Conclusions

- discrepancy between E821 and SM at (*g* − 2)*^μ* ∼ 4*σ*
	- Extremely interesting portal to BSM physics
- **H-LO contribution is the dominant source of theoretical** uncertainty: $U \delta N$ aims to nail it down;
	- LOI submitted in 2019; First pilot run 2021;
	- Possible start of physics run in 2023.
- Delicate experiment aiming to reach **ppm** precision: very challenging but very stimulating!

Feedback form

<https://forms.gle/bjQu4JBBQtVmEaAw9>

⁴³ LLR Students Seminar, 08/10/2019