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classifiers: 
• Recurrent Neural Networks (RNNs):


• LSTM

• GRU


• Bayesian RNNs

• MC dropout (Gal+2016)

• Bayes by Backprop (Fortunato+2017)


• Convolutional Neural Networks

• (Random Forest w. SALT2 fit parameters)
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inputs: 

- observed fluxes + errors

- time

- optional: host galaxy redshifts

uses observed data

no rest-frame, dust, … corrections

Handles irregular sampled time series!
   No feature engineering necessary!
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Table 1. Simulated supernovae samples divided by subtypes. We
show the number of supernovae light-curves available per type in
the complete dataset and the number that have a succesful SALT2
fit. Each SN type represents a template with the exception of type
IIL for which we use two di↵erent templates.

Simulated supernovae

SN type SALT2 fitted complete dataset

Ia 402,786 912,691
Ib 140,197 181,454
Ic 70,811 90,485
IIP 94,994 296,523
IIn 3,249 154,614
IIL 93,535 189,615

IILs by template

IIL1 26,717 100,827
IIL2 66,818 88,788

spectroscopic and photometric host galaxy redshifts (Kessler
et al. 2010a; Gupta et al. 2016). To reflect real survey con-
ditions, spectroscopic redshift is obtained only for a subset
of light-curves.

In all the classification tasks that follow, we sub-sample
the dataset to make sure classes are balanced. For binary
classification i.e. the discrimination of SNe Ia vs. others,
we obtain a balanced sample of 912, 691 light-curves (resp.
402, 786 with SALT2 fits). Detailed statistics for binary clas-
sification are shown in Table 1. Our simulation count is more
than an order of magnitude larger than SPCC which con-
tained 21, 319 light-curves. We split the data as follows: 80%
training, 10% validation and 10% testing.

In the following we report our results separately for the
“complete”and the“SALT2 fitted”datasets. The former con-
tains all our simulated light-curves after class-balancing. The
latter contains only light-curves that were successfully fitted
with SALT2 (Guy et al. 2007). Since past and current super-
nova surveys have been focused on discovering type Ia su-
pernovae, this “SALT2 fitted” sample is closer to their spec-
troscopically targeted supernovae. We will call the “SALT2

fitted” dataset a non-representative one, as it fails to explore
the full diversity of supernovae. Our representative set will
be the “complete” dataset. We further explore these samples
and the issue of representativeness in Section 5.2.

2.2 Evaluation metrics

ROC curve

AUC is a robust metric, commonly used as an evaluation
method for binary classification. AUC stands for Area Un-
der Curve, where the curve is the ROC curve (Receiver Op-
erating Characteristic). The ROC curve gives an indication
of the performance of a binary classifier by plotting the true
positive rate (e�ciency) against the false positive rate (con-
tamination). While the ROC curve represents the perfor-
mance of a model in two-dimensions, the AUC simplifies
this into a number. A perfect model would score an AUC of
1 while a random classifier would score 0.5.

Accuracy, Purity and Contamination

If classes are balanced, classification accuracy is an intuitive
and useful metric. Accuracy is measured as the number of
correct predictions against the total number of predictions.
For binary classification, accuracy can also be calculated in
terms of positives and negatives as follows:

accuracy = TP + TN
TP + TN + FP + FN (1)

where TP (resp. TN) are true positives (resp. negatives)
and FP (resp. FN) are false positives (resp. negatives). For
binary classification, TP shows the number of correctly clas-
sified SNe Ia while TN shows the number of correctly clas-
sified core-collapse SNe. In this work, unless specified, the
predicted type corresponds to the highest probability class.

The purity of the SN Ia sample and the classification
e�ciency are defined as:

purity = TP
TP + FP ; e�ciency = TP

TP + FN (2)

Contamination by core collapse is defined as:

contamination = FP
FP + TN (3)

In this work, performance metrics reported with errors
represent the mean and one standard deviation of the distri-
bution. This distribution is obtained by performing 5 runs
with di↵erent random seeds.

2.3 Recurrent Neural Networks (RNNs)

RNNs are a class of neural nets that allow connections be-
tween hidden units with a time delay; they are well-suited
for modeling sequential data or time series data (Bahdanau
et al. 2014; Sutskever et al. 2014; Mehri et al. 2016; Kalch-
brenner et al. 2018; Vasquez & Lewis 2019). Through the
connections between hidden units, the model can learn to
retain or discard past information about its inputs, and
in principle discover correlations across time. Popular re-
cent architectures such as Long short-term memory (LSTM)
(Hochreiter & Schmidhuber 1997) or Gated Recurrent Univt
(GRU) (Chung et al. 2014) alleviate some of the issues that
occur when training these models. They introduce a memory
cell and gating mechanisms that endow recurrent networks
with better control of the information flow.

The structure of a basic RNN with 2 hidden layers is
illustrated in Fig. 1. The same series of operations (typically
an a�ne matrix multiplication followed by an activation
function) are applied to each element of a sequence (X)t2[1,T ]
to produce a sequence of hidden states (ht). These opera-
tions are parameterized by learnt weights (W,W 0,V,U,U 0 in
Figure 1) and biases (b). Multiple recurrent layers can be
stacked on top of each other by feeding a layer’s output as
input to the next layer. To obtain the class prediction, the
sequential information is eventually condensed to a fixed
length representation (for instance through mean-pooling,
i.e averaging of the hidden states). The use of a softmax
function ensures that the network’s output can be under-
stood as probabilities. In Fig. 1, the RNN is bidirectional: it
is allowed to process information from left to right as well as
from right to left. This has been used in many applications
such as language translation to improve performance.

MNRAS 000, 1–19 (2018)
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96.8 ± 0.1. Although both methods were trained with di↵er-
ent samples, our accuracies are comparable. Our algorithm
seems to be more sensitive to redshift information providing
up to 4% accuracy increase for this sample size.

3.4 Redshift, contamination and e�ciency

The addition of photometric redshifts, which are available
for all our simulated supernovae, increases the accuracy of
our baseline RNN by 2% for photometric and 3% for spectro-
scopic redshifts. Since spectroscopic redshifts are available
for a subset of supernovae, we only evaluate performance on
light-curves for which this redshift is available. We will con-
tinue using this subsample performance throughout the rest
of this manuscript.

A photometrically classified type Ia supernova sample is
expected to have a small percentage of contamination from
other supernova types. As mentioned in Section 2.1, our sim-
ulations are realistic and therefore include known SN rates
and detection e�ciencies for a survey such as DES. There-
fore, our estimates are a good indicator of the expected con-
tamination by core-collapse SNe in a photometrically classi-
fied SN Ia sample.

We find that the contamination (or False Positive Rate)
is dominated by types Ib and Ic supernovae when classify-
ing without redshift information. This contamination peaks
at simulated redshift between 0.2 for Ic and 0.4 for Ib and
for our Baseline RNN is in the order of a couple percent for
Ib and Ic SNe and under 1% for other types. Contamina-
tion levels are found to be not correlated with the number
of light-curves for training. Within this 1% contamination
there are type IIL and IIP SNe which are more numerous
than type Ic in our simulations but are mostly correctly
classified by SuperNNova. Host-galaxy redshifts increase the
performance of our classifier reducing contamination. In par-
ticular simulated supernovae from Ib, and Ic templates are
better classified, reducing their contamination contribution
in our Baseline RNN from 2.5±0.2 and 1.3±0.1 respectively
to < 0.1% with host redshifts. Interestingly, classification of
other core-collapse SNe such as IIP, IIn and IIL1 is barely
a↵ected by this additional information.

Selection e�ciency is an important metric when clas-
sifying type Ia supernovae. For spectroscopically selected
samples, selection e�ciencies drop quickly for faint events
(Kessler et al. 2018; D’Andrea et al. 2018). Our Baseline
RNN performs superbly, with almost constant e�ciency as
a function of simulated redshift with an average e�ciency of
97.3 ± 0.4 without and up to 99.61 ± 0.09 with host-galaxy
redshift information. Such high e�ciencies enable probing
new supernovae populations at high-redshift and can have
an important e↵ect on selection biases found currently in
cosmology as will be discussed in Section 5.

Furthermore, one of the biggest limitation of photomet-
rically classified samples is the expected contamination level
by other supernova types which may a↵ect statistical anal-
yses (Hlozek et al. 2012; Jones et al. 2018). It has also been
shown that for photometrically classified SNe Ia there is a
compromise between sample purity and the e�ciency of the
classifier (Möller et al. 2016; Dai et al. 2018). We find that
our highly e�cient algorithm does not compromises the pu-
rity of the sample. On the contrary, the purity of a SN Ia
sample classified without redshift is 95.4± 0.5, while the ad-

Figure 3. Ia vs. non-Ia classification accuracy with respect to
training set size using the SALT2 fitted dataset. Top axis indi-
cates the used data fraction and the bottom axis number of su-
pernovae. Accuracy of baseline RNN is shown in indigo squares,
CNN in grey diamonds and Random Forest in orange circles. Er-
ror bars are one standard deviation from the accuracy distribution
for five runs with di↵erent random seeds to initialize the networks
weights. Classification using: no host-galaxy redshifts are empty,
photometric host-galaxy redshifts bottom filled and spectroscopic
host redshifts fully filled. Our Baseline RNN achieves greater ac-
curacies than the other classifiers for the same dataset and explicit
redshift information.

dition of redshifts increases the sample purity to 99.49±0.05.
This level of contamination, less than 1%, is within the cur-
rent range of contamination of spectroscopically classified
samples currently used in cosmological and astrophysical
analyses (Rubin et al. 2015).

3.5 Early light-curve classification

Having demonstrated the high performance of our baseline
RNN in comparison to other classification methods, we now
turn to explore other capabilities of SuperNNova. To do
so, we use the complete dataset which contains light-curves
that are not successfully fitted with SALT2. This increases
the number and diversity of the training set for both core-
collapse and type Ia supernovae. The e↵ect of the SN di-
versity on the classifier performance is further studied in
Section 5.2.

While there are currently a wealth of algorithms that
can classify complete light-curves, only a handful are able to
classify partial light-curves. Our RNN architecture allows us
to accurately classify supernovae with a limited number of
photometric epochs. At each light-curve time step, as more
information is added, the RNN hidden state is updated, al-
lowing the network to adapt its predictions.

In Table 2 we present our baseline RNN accuracies for
partial light-curve classification for the whole SALT2 fitted

and complete datasets. The number of photometric epochs
(nights) available at di↵erent stages of the light-curves are
shown in Figure 4. In average, we require only ⇡ 5 observ-
ing nights to obtain classification accuracies > 80%. Since
simulated light-curves can contain photometric nights be-

MNRAS 000, 1–19 (2018)
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8 Möller & de Boissière

Figure 4. Average number of photometric epochs (nights) avail-
able for early light-curve classification. Time is expressed in days
around simulated peak supernova brightness (-2,-1,peak,+1,+2).
Colors indicate accuracy of the classification for the Baseline RNN
as shown in Table 2 for the complete dataset without any redshift
information. We show both the raw average number of photomet-
ric epochs and a supernova ”realistic” estimation. Since our sim-
ulated light-curves can include observations before the supernova
explosion, a more realistic estimation of the useful photometric
points includes only observations two weeks before observed peak
brightness which is a loose estimate of the pre-maximum phase
of a type Ia supernova light-curve.

fore the actual supernova explosion, we provide a ”realistic”
estimate for unique nights useful in the classification. For
this estimate, we select only photometric epochs within 14
days before peak maximum which is a loose threshold for the
rising time of type Ia supernovae. Using this more realistic
metric, we require between 2.4±1.2 and 3.3±1.4 photometric
epochs in average to start accurately classifying supernovae.
We note that this low number of required epochs is linked
to multi-color observations in each night which provide valu-
able information for classification.

Additionally, since training set numbers a↵ect perfor-
mance metrics, we compare the performance with 43% of
the complete dataset. This fraction of the complete dataset
has a similar size training set than the SALT2 fitted one.

For all datasets, our baseline RNN is capable of attain-
ing a high-accuracy classification, > 83% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.4 ± 0.3% contribution and
Ic with 3.3 ± 0.2%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able
to accurately classify light-curves before and at maximum

Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 83.6 ± 0.6 85.0 ± 0.7 86.4 ± 0.7 96.3 ± 0.4
zpho 93.2 ± 0.4 93.8 ± 0.5 94.5 ± 0.5 98.4 ± 0.3
zspe 97.0 ± 0.2 97.4 ± 0.2 97.9 ± 0.2 99.55 ± 0.06

43% of complete dataset

redshift -2 0 +2 all

None 86.1 ± 0.1 87.24 ± 0.08 88.31 ± 0.09 96.65 ± 0.05
zpho 93.0 ± 0.3 93.7 ± 0.3 94.3 ± 0.3 98.6 ± 0.2
zspe 92.7 ± 0.4 93.4 ± 0.4 94.0 ± 0.5 98.1 ± 0.2

Complete dataset

redshift -2 0 +2 all

None 86.4 ± 0.1 87.6 ± 0.1 88.6 ± 0.1 96.92 ± 0.09
zpho 93.5 ± 0.1 94.2 ± 0.1 94.8 ± 0.1 98.85 ± 0.04
zspe 93.3 ± 0.1 94.0 ± 0.1 94.6 ± 0.1 98.43 ± 0.08

light. With accuracies ranging from 83.6±0.6 up to 97.0±0.2
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

MNRAS 000, 1–19 (2018)
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained

MNRAS 000, 1–18 (2018)
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Table 2. Ia vs. non-Ia classification accuracy using baseline RNN
trained with whole SALT2 fitted dataset, a fraction of 0.43 and
the whole complete dataset. Accuracy for partial light-curve clas-
sification with respect of days before or after simulated supernova
peak, all indicates all data points available for each light-curve.
The addition of host redshift features is indicated as photometric
(zpho) or spectroscopic (zspe). For the latter, since not all super-
novae have a spectroscopic redshift, we show the accuracy of the
subsample with spectroscopic host redshift.

SALT2 fitted dataset

redshift -2 0 +2 all

None 84.02 ± 0.21 85.36 ± 0.21 86.72 ± 0.19 96.51 ± 0.12
zpho 93.26 ± 0.44 93.88 ± 0.5 94.5 ± 0.54 98.4 ± 0.28
zspe 96.92 ± 0.26 97.36 ± 0.28 97.75 ± 0.25 99.51 ± 0.08

43% of complete dataset

redshift -2 0 +2 all

None 85.94 ± 0.15 87.08 ± 0.14 88.15 ± 0.14 96.63 ± 0.05
zpho 93.2 ± 0.15 93.87 ± 0.13 94.47 ± 0.12 98.63 ± 0.06
zspe 92.21 ± 0.81 92.96 ± 0.77 93.51 ± 0.77 97.84 ± 0.45

Complete dataset

redshift -2 0 +2 all

None 86.47 ± 0.16 87.59 ± 0.13 88.68 ± 0.11 96.97 ± 0.06
zpho 93.56 ± 0.06 94.25 ± 0.07 94.84 ± 0.06 98.83 ± 0.02
zspe 93.36 ± 0.15 94.09 ± 0.14 94.66 ± 0.14 98.43 ± 0.07

ing a high-accuracy classification, > 84% right before the
maximum of a supernova light-curve. Further, we show that
the addition of host-galaxy redshifts produce a rise in accu-
racy as high as 12 points.

We note that for spectroscopic redshifts, the complete

sample has lower accuracy when compared with the use of
photometric redshifts. This was not observed in the SALT2

fitted sample and it may be explained by a selection bias
in the complete dataset for supernovae with spectroscopic
redshifts.

When classifying type Ia supernovae before or around
maximum light, we find that contamination is still domi-
nated by Ib supernovae with 9.17 ± 0.19% contribution and
Ib with 3.27± 0.07%. Interestingly, type IIP and IIL2 super-
novae can contribute around 2% of the contamination each,
while this is rarely the case for complete light curve classi-
fication. This may be due to characteristic features of these
light-curves only present after maximum light, such as the
plateau exhibited by type IIp SNe.

In summary, we have shown that SuperNNova is able to
accurately classify light-curves before and at maximum light.
With accuracies ranging from 84.02± 0.21 up to 96.92± 0.26
for the salt fitted dataset, without and with redshifts respec-
tively. SuperNNova opens a path towards e�cient use of
photometric and spectroscopic resources for follow-up. Can-
didates can then be prioritized for diverse science goals in-
cluding targeted samples (e.g. SNe Ia for cosmology) and
improving the SN sample for photometric classification as
recently proposed by Ishida et al. (2018). Such a functional-
ity will be crucial in the upcoming surveys where each night
thousands of transients may be discovered.

3.6 Classifying many supernovae types

There is more to supernovae classification than binary clas-
sification. Time-domain surveys are increasingly exploring
the diversity of supernovae and would benefit from classifi-
cation of multiple supernova classes. We explore ternary (Ia,
Ibc and IIs) and seven-way (Ia, IIP, IIn, IIL1, IIL2, Ib, Ic)
classification tasks. We train with the complete dataset to
obtain a large number of light-curves per target.

For ternary classification, we train with 318, 820 light-
curves per type and for the seven-way classification with
104, 158 per type. Accuracies for these classifications with
and without redshifts are shown in Table 3. For complete
light-curves our method yields unprecedented classification
accuracy, providing a useful tool for obtaining photometric
samples of a diversity of supernovae. Early classification be-
comes a much more challenging tasks and we consequently
observe a notable performance degradation. Nonetheless,
our algorithm provides a reasonable indication of the pos-
sible supernova type and performance is enhanced with the
incorporation of redshift information.

For an equivalent training sample per type, the ternary
or seven-way classification accuracy with or without redshift
and whole light-curves is much lower than for binary classi-
fication (Ia vs. non Ia) as shown in Figure 3. Splitting the
core-collapse supernovae in subclasses adds a new level of
complexity which accounts for the performance drop. Inter-
estingly, for seven-way classification the contamination of
the SN Ia sample is dominated by type IIP SN as seen in
Figure 4. This was seen for early classification in previous
Section 3.5 but not for the complete light-curve classifica-
tion.

As seen in Table 3, early classification is severely im-
pacted by adding more classification targets. A thorough
study on mechanisms to improve multiclass predictions is
out of the scope of this paper but an interesting avenue
for further studies. It is possible that a two-step procedure
is useful, where: first a multi-target prediction would iden-
tify the most probable targets and then, a second predic-
tion with an algorithm specifically trained on the top can-
didates would refine the classification. The extensive results
presented here show that SuperNNova can be a valuable
tool for present and future surveys that wish to prioritize
spectroscopic and photometric follow-up targets.

4 BAYESIAN RNNS (BRNNS)

In this Section we introduce Bayesian Recurrent Neural
Networks. These RNNs fit a posterior distribution on the
weights of the neural network thus allowing us to sample
di↵erent predictions for a given input. Both of our BRNNs
are derived from a technique called Variational Inference

which we will now quickly review.

4.1 Variational Inference

Following (Blundell et al. 2015), we can view neural networks
as a model aiming to correctly estimate P (y|X,w) where in
our case, P is a categorical distribution, y is the classifica-
tion target, X is the photometric light-curve and w are the
network’s weights. Neural networks are traditionally trained
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Figure 4. Confusion Matrix for seven-way classification with best
performing Baseline classifier with no redshift information. Ma-
trix shows the fraction of light-curves for a given supernova type
(True label) classified as the supernova type in the horizontal axis
(Predicted label). The diagonal elements are those light-curves
correctly classified while o↵-diagonal elements are those that are
mislabeled by the classifier. Color bar indicates the normalized
percentage of a certain type of SN light-curves in the predicted la-
bel. For seven-way classification our algorithm performs superbly
for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
acterized.

Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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percentage of a certain type of SN light-curves in the predicted la-
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for types Ib, IIL1 and IIn SNe while SNe Ia are not as well char-
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Table 3. Ternary (Ia, Ibc, IIs) and seven-way (Ia, IIP, IIn, IIL1,
IIL2, Ib, Ic) classification using baseline RNN trained with com-
plete dataset. Accuracy for partial light-curve classification with
respect of days before or after simulated supernova peak. The ad-
dition of host redshift features is indicated as photometric (zpho)
or spectroscopic (zspe). We evaluate the accuracy for the com-
plete validation sample and for the subset of light-curves that
possess a spectroscopic host-galaxy redshift.

Ternary classification

redshift -2 0 +2 all

None 69.36 ± 0.34 71.76 ± 0.33 74.39 ± 0.3 92.64 ± 0.16
zpho 79.62 ± 0.25 81.44 ± 0.32 83.35 ± 0.32 95.4 ± 0.15
zspe 78.83 ± 0.18 80.7 ± 0.17 82.59 ± 0.17 94.99 ± 0.12

Seven-way classification

redshift -2 0 +2 all

None 57.2 ± 0.31 60.08 ± 0.34 62.99 ± 0.32 86.89 ± 0.2
zpho 64.69 ± 0.21 67.32 ± 0.26 69.96 ± 0.25 90.02 ± 0.14
zspe 63.99 ± 0.58 66.74 ± 0.62 69.43 ± 0.65 90.14 ± 0.47

using a maximum likelihood criterion: given a set of la-
beled training observations D = (Xk, yk )k=1...K , we minimize
the negative log likelihood N LL = minw

ÕK
k=1 � logP(yk |Xk,w)

with gradient descent. Weights are determined during train-
ing and then used to obtain classifications ŷ of new, unla-
beled data.

Moving on to the Bayesian picture, instead of having
a fixed value for each weight in the neural network, we
now assign a distribution to each weight. We seek to find
the posterior distribution of the weights: P (w|D) which will
then allow us to make predictions for new, unlabeled data
points: P(ŷ|X) =

Ø
P(ŷ|X,w)P (w|D) dw. Typically, the pos-

terior distribution is intractable for deep neural networks.
To sidestep this di�culty, we can approximate the posterior
with a simple parametric distribution q(w|✓) called the vari-

ational distribution. In the gaussian case, ✓ = (µ,�), respec-
tively the mean and standard deviation of the distribution.
Neural networks are then trained to minimize a divergence
between the posterior distribution and its variational ap-

proximation:

✓̂ = min
✓

KL (q(w|✓)| |P(w|D)) (4)

= min
✓


KL (q(w|✓)| |P(w)) �

π
q(w|✓) logP(D|w)dw

�
(5)

= min
✓

⇥
KL (q(w|✓)| |P(w)) � Eq(w |✓)(logP(D|w))

⇤
(6)

where P(w) is a user-specified prior distribution over the
neural network’s weights. This new cost function is made up
of two terms. The first one, the KL term, is a regularization
term: it penalizes variational distributions which di↵er too
much from the prior. The second one is a likelihood term;
our model must be flexible enough to handle the complex-
ity of the data distribution. Bayesian optimization of neural
networks is a trade-o↵ between those two terms.

We will now review two ways in which the variational
distribution can be specified and investigate their applica-
tions to supernova cosmology. Results in the following sec-
tions use the complete dataset for training, validation and
testing.

4.2 Variational

Following (Gal & Ghahramani 2015b,a) we define our varia-
tional distribution to factorize over each row of the network’s
weight matrices: q(wk ) = pN(0,�2

I)+(1�d)N(µk,�2
I) where

d is the dropout probability, N the normal distribution, µk
is the variational parameter we optimize over with our gradi-
ent descent algorithm, �2 is a fixed, small constant and I the
identity. Using a normal prior on the weights, the KL term
can be approximated as L2 regularization on the network’s
weights. Evaluating this network then becomes equivalent to
performing dropout (i.e. masking with zeros) on the rows of
the weight matrices (or equivalently, on each layer’s input).
The network can then be trained as usual, as long as we use
the same dropout mask at every time step in the sequence
(Gal & Ghahramani 2015b,a).

We can now obtain a distribution of predictions, sim-
ply by sampling a di↵erent dropout mask for each predic-
tion. In this work we sample predictions fifty times for each
light-curve. The median of this array is used to report the
accuracy score. These uncertainties can provide valuable in-
formation on the classifier’s confidence on the prediction.

We use the same hyper-parameters as those of the base-
line RNN presented in Section 3. We probe di↵erent dropout
values, [0.01, 0.05, 0.1, 0.2] and weight decay [1e

�5, 1e
�7, 1e

�9]
to evaluate the performance of the network with a data frac-
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𝒫(ŷ |x) = ∫ 𝒫(ŷ |x, w)𝒫 (w |𝒟) dw

posterior is intractable for deep neural networks

𝒫(w |𝒟) ≈ q(w |θ) variational distribution



bayesian RNNs

Approximating the variational distribution

1. MC dropout 
Gal & Ghahramani 2016
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Figure 1: Depiction of the dropout technique following our Bayesian interpretation (right)
compared to the standard technique in the field (left). Each square represents an RNN unit, with
horizontal arrows representing time dependence (recurrent connections). Vertical arrows represent
the input and output to each RNN unit. Coloured connections represent dropped-out inputs, with
different colours corresponding to different dropout masks. Dashed lines correspond to standard
connections with no dropout. Current techniques (naive dropout, left) use different masks at different
time steps, with no dropout on the recurrent layers. The proposed technique (Variational RNN, right)
uses the same dropout mask at each time step, including the recurrent layers.

suitably defined likelihood functions. We then perform approximate variational inference in these
probabilistic Bayesian models (which we will refer to as Variational RNNs). Approximating the
posterior distribution over the weights with a mixture of Gaussians (with one component fixed at
zero and small variances) will lead to a tractable optimisation objective. Optimising this objective is
identical to performing a new variant of dropout in the respective RNNs.

In the new dropout variant, we repeat the same dropout mask at each time step for both inputs, outputs,
and recurrent layers (drop the same network units at each time step). This is in contrast to the existing
ad hoc techniques where different dropout masks are sampled at each time step for the inputs and
outputs alone (no dropout is used with the recurrent connections since the use of different masks
with these connections leads to deteriorated performance). Our method and its relation to existing
techniques is depicted in figure 1. When used with discrete inputs (i.e. words) we place a distribution
over the word embeddings as well. Dropout in the word-based model corresponds then to randomly
dropping word types in the sentence, and might be interpreted as forcing the model not to rely on
single words for its task.

We next survey related literature and background material, and then formalise our approximate
inference for the Variational RNN, resulting in the dropout variant proposed above. Experimental
results are presented thereafter.

2 Related Research

In the past few years a considerable body of work has been collected demonstrating the negative
effects of a naive application of dropout in RNNs’ recurrent connections. Pachitariu and Sahani [7],
working with language models, reason that noise added in the recurrent connections of an RNN leads
to model instabilities. Instead, they add noise to the decoding part of the model alone. Bayer et al. [8]
apply a deterministic approximation of dropout (fast dropout) in RNNs. They reason that with dropout,
the RNN’s dynamics change dramatically, and that dropout should be applied to the “non-dynamic”
parts of the model – connections feeding from the hidden layer to the output layer. Pham et al. [9]
assess dropout with handwriting recognition tasks. They conclude that dropout in recurrent layers
disrupts the RNN’s ability to model sequences, and that dropout should be applied to feed-forward
connections and not to recurrent connections. The work by Zaremba, Sutskever, and Vinyals [4] was
developed in parallel to Pham et al. [9]. Zaremba et al. [4] assess the performance of dropout in RNNs
on a wide series of tasks. They show that applying dropout to the non-recurrent connections alone
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2. Bayes by Backprop 
Fortunato+ 2017

Algorithm: Bayes by Backprop for RNNs

Sample ✏ ⇠ N (0, I), ✏ 2 Rd, and set network
parameters to ✓ = µ+ �✏.
Sample a minibatch of truncated sequences (x, y).
Do forward and backward propagation as normal,
and let g be the gradient w.r.t ✓.
Let g

KL
✓ , g

KL
µ , g

KL
� be the gradients of

logN (✓|µ,�2) � log p(✓) w.r.t. ✓, µ and �

respectively.
Update µ using the gradient g+ 1

C gKL
✓

B +
gKL
µ

BC .

Update � using the gradient
⇣

g+ 1
C gKL

✓

B

⌘
✏+ gKL

�
BC .

Figure 1: Illustration (left) and Algorithm (right) of Bayes by Backprop applied to an RNN.

to sample the parameters of the RNN, and how to weight the contribution of the KL regulariser of
(2). We shall briefly justify the adaptation of BBB to RNNs, given in Figure 1. The variational free
energy of (2) for an RNN on a sequence of length T is:

L(✓) = �Eq(✓) [log p(y1:T |✓, x1:T )] + KL [q(✓) || p(✓)] , (3)

where p(y1:T |✓, x1:T ) is the likelihood of a sequence produced when the states of an unrolled RNN
FT are fed into an appropriate probability distribution. The parameters of the entire network are
✓. Although the RNN is unrolled T times, each weight is penalised just once by the KL term,
rather than T times. Also clear from (3) is that when a Monte Carlo approximation is taken to the
expectation, the parameters ✓ should be held fixed throughout the entire sequence.

Two complications arise to the above naive derivation in practice: firstly, sequences are often long
enough and models sufficiently large, that unrolling the RNN for the whole sequence is prohibitive.
Secondly, to reduce variance in the gradients, more than one sequence is trained at a time. Thus the
typical regime for training RNNs involves training on mini-batches of truncated sequences.

Let B be the number of mini-batches and C the number of truncated sequences (“cuts”), then we
can write (3) as:

L(✓) = �Eq(✓)

"
log

BY

b=1

CY

c=1

p(y(b,c)|✓, x(b,c))

#
+ KL [q(✓) || p(✓)] , (4)

where the (b, c) superscript denotes elements of cth truncated sequence in the bth minibatch. Thus
the free energy of mini-batch b of a truncated sequence c can be written as:

L(b,c)(✓) = �Eq(✓)

h
log p(y(b,c)|✓, x(b,c)

, s
(b,c)
prev )

i
+ w

(b,c)
KL KL [q(✓) || p(✓)] , (5)

where w
(b,c)
KL distributes the responsibility of the KL cost among minibatches and truncated se-

quences (thus
PB

b=1

PC
c=1 w

(b,c)
KL = 1), and s

(b,c)
prev refers to the initial state of the RNN for the

minibatch x
(b,c). In practice, we pick w

(b,c)
KL = 1

CB so that the KL penalty is equally distributed
among all mini-batches and truncated sequences. The truncated sequences in each subsequent mini-
batches are picked in order, and so s

(b,c)
prev is set to the last state of the RNN for x(b,c�1).

Finally, the question of when to sample weights follows naturally from taking a Monte Carlo ap-
proximations to (5): for each minibatch, sample a fresh set of parameters.

4 POSTERIOR SHARPENING

The choice of variational posterior q(✓) as described in Section 3 can be enhanced by adding side
information that makes the posterior over the parameters more accurate, thus reducing variance of
the learning process.

3
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h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)



Model 1: representative model

Model 2: train non-representative model

classify representative sample
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M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)
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M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

training sets are:


  1. not representative


 

photometric classifiers & common pitfalls



Model 1: representative model

Model 2: train non-representative model

classify representative sample

12
M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
sh
if
ts

fo
r
b
ot
h

d
at
as
et
s

is
sh
ow

n
in

F
ig
u
re

7.
T
o

in
ve
st
ig
at
e
th
e
d
is
cr
ep

an
cy

b
e-

tw
ee
n
sp

ec
tr
os
co
p
ic

an
d
p
h
ot
om

et
ri
c
sa
m
p
le
s,
w
e
tr
ai
n
w
it
h

th
e
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et

an
d

ev
al
u
at
e
th
e
cl
as
si
fi
ca
-

ti
on

p
er
fo
rm

an
ce

fo
r
th
e
te
st

sa
m
p
le

in
th
e
re
p
re
se
n
ta
ti
ve

d
at
as
et
.

F
or

cl
as
si
fi
ca
ti
on

w
it
h

n
o
re
d
sh
if
ts

u
si
n
g
th
e
B
as
el
in
e

an
d
V
ar
ia
ti
on

al
R
N
N
s
w
e
fi
n
d
th
at

th
e
ac
cu

ra
cy

is
re
d
u
ce
d

b
y

0.
3%

w
h
en

tr
ai
n
ed

w
it
h
a
n
on

-r
ep

re
se
n
ta
ti
ve

d
at
as
et
.
A
l-

th
ou

gh
sm

al
l,
th
is

va
ri
at
io
n
is

n
ot

w
it
h
in

th
e
u
n
ce
rt
ai
n
ti
es

of
ou

r
m
o
d
el

ac
cu

ra
ci
es
.

A
s
d
is
cu

ss
ed

in
S
ec
ti
on

4.
4,

B
ay
es
ia
n
R
N
N
s
ca
n
ca
p
tu
re

e
p
is
te
m
ic

u
n
c
e
r
ta
in
ty

w
h
ic
h
in
cl
u
d
es

th
e
la
ck

of
d
iv
er
si
ty

in
th
e
m
o
d
el
’s

tr
ai
n
in
g
se
t.

T
h
er
ef
or
e,

w
e
ex
p
ec
t
a
B
ay
es
ia
n

R
N
N

tr
ai
n
ed

on
n
on

-r
ep

re
se
n
ta
ti
ve

se
t
(i
n
ou

r
ca
se
,
th
e
fu
ll

S
A
L
T
2
fi
tt
e
d
d
at
as
et
)
to

b
e
m
or
e
u
n
ce
rt
ai
n
th
an

on
e
tr
ai
n
ed

on
a
re
p
re
se
n
ta
ti
ve

se
t
(i
n

ou
r
ca
se
,
a
su
b
se
t
of

th
e
c
o
m
-

p
le
te

d
at
as
et
)
w
h
en

ev
al
u
at
in
g
on

sa
id

re
p
re
se
n
ta
ti
ve

se
t.

T
o
q
u
an

ti
fy

th
is

in
a
ri
go

ro
u
s
w
ay
,
w
e
u
se

th
e
tw

o
m
et
ri
cs

in
tr
o
d
u
ce
d
in

S
ec
ti
on

4.
4.
1.

W
e
fi
n
d
b
ot
h
m
et
ri
cs

to
b
e
p
os
-

it
iv
e
fo
r
al
l
B
R
N
N
s,
�
µ
>

0.
00

5
an

d
�

H
>

0.
01

.
T
h
e
la
ck

of
re
p
re
se
n
ta
ti
v
it
y
an

d
th
e
li
m
it
at
io
n
s
of

su
-

p
er
n
ov
a
te
m
p
la
te
s
ar
e
m
a
jo
r
is
su
es

in
S
N

p
h
ot
om

et
ri
c
cl
as
-

si
fi
ca
ti
on

.
R
ec
en
tl
y,

Is
h
id
a
et

al
.
(2
01

8)
in
tr
o
d
u
ce
d
a
fr
am

e-
w
or
k

fo
r
th
e

op
ti
m
iz
at
io
n

of
sp

ec
tr
os
co
p
ic

fo
ll
ow

-u
p

re
-

so
u
rc
es

to
im

p
ro
ve

S
N

p
h
ot
om

et
ri
c
cl
as
si
fi
ca
ti
on

d
at
as
et
s.

B
ay
es
ia
n
R
N
N

u
n
ce
rt
ai
n
ti
es

m
ay

b
e
a
p
ro
m
is
in
g
in
d
ic
at
or

F
ig
u
re

7
.
D
is
tr
ib
u
ti
o
n
s
o
f
m
ax

im
u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
(m

ag
),

in
al
l
D
E
S
fi
lt
er
s
(g
,i
,r
,z

),
an

d
o
f
si
m
u
la
te
d
re
d
sh

if
t
fo
r
S
A
L
T
2

fi
tt
ed

(l
ef
t
y
el
lo
w
)
a
n
d
co
m
p
le
te

(r
ig
h
t
b
lu
e)

d
a
ta
se
ts
.
M
a
x
im

u
m

o
b
se
rv
ed

b
ri
g
h
tn

es
s
is
sh

ow
n
fo
r
ty
p
e
Ia

a
n
d
n
on

-I
a
sa
m
p
le
s
w
h
il
e

si
m
u
la
te
d

re
d
sh

if
t
is

sh
ow

n
fo
r
ea

ch
o
f
th

e
av

a
il
ab

le
te
m
p
la
te
s.

D
a
sh

ed
li
n
es

sh
ow

th
e
m
ed

ia
n

a
n
d

fi
rs
t
q
u
a
rt
il
e
o
f
th

e
d
is
tr
i-

b
u
ti
o
n
.
T
h
e
co
m
p
le
te

a
n
d

S
A
L
T
2

fi
tt
ed

d
at
a
se
ts

p
ro
b
e
si
m
il
ar

p
ar
a
m
et
er

sp
ac

e
b
u
t
h
av

e
d
i↵
er
en

t
d
is
tr
ib
u
ti
on

s.
T
h
is

is
si
m
il
ar

to
w
h
at

is
ex

p
ec
te
d
o
f
n
o
n
-r
ep

re
se
n
ta
ti
v
e
sa
m
p
le
s.

to
se
le
ct

fo
ll
ow

-u
p

ca
n
d
id
at
es

fo
r
th
is

p
u
rp
os
e.

T
h
is

is
an

in
te
re
st
in
g
p
os
si
b
il
it
y
w
h
ic
h
w
e
le
av
e
fo
r
fu
tu
re

w
or
k
.

5
.3

O
u
t
o
f
d
is
tr
ib
u
ti
o
n

li
g
h
t-
cu

rv
e
s
(O

O
D
)

In
as
tr
on

om
y,

as
in

an
y
ot
h
er

cl
as
si
fi
ca
ti
on

ap
p
li
ca
ti
on

,
th
e

ge
n
er
al
iz
at
io
n
p
ro
p
er
ti
es

of
a
cl
as
si
fi
er

an
d
it
s
b
eh

av
io
r
on

u
n
se
en

,
p
os
si
b
ly

ou
t-
of
-d
is
tr
ib
u
ti
on

sa
m
p
le
s

re
p
re
se
n
ts

a
ch
al
le
n
ge
.
In

th
is

se
ct
io
n
w
e
st
u
d
y
th
e
p
er
fo
rm

an
ce

of
S
u
-

p
er
N
N
ov
a
w
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
.

W
e
te
st

fo
u
r
d
i↵
er
en
t
ty
p
es

of
O
O
D
s:

ti
m
e
re
ve
rs
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

ly
sh
u
✏
ed

li
gh

t-
cu

rv
es
,
ra
n
d
om

fl
u
x
es

an
d
a

si
n
u
so
id
al

si
gn

al
.
T
h
e
la
tt
er

tw
o
w
er
e
ge
n
er
at
ed

u
si
n
g
th
e

sa
m
e
ca
d
en

ce
an

d
fl
u
x
ra
n
ge

as
n
or
m
al

su
p
er
n
ov
ae
.
T
h
es
e

li
gh

t-
cu

rv
es

ar
e
on

ly
u
se
d
fo
r
te
st
in
g
an

d
w
er
e
n
ot

u
se
d
fo
r

tr
ai
n
in
g
at

an
y
ti
m
e.

W
h
en

cl
as
si
fy
in
g
ou

t-
of
-d
is
tr
ib
u
ti
on

li
gh

t-
cu

rv
es
,a

ll
S
u
-

p
er
N
N
ov
a

al
go

ri
th
m
s
ra
re
ly

cl
as
si
fy

th
es
e

li
gh

t-
cu

rv
es

as
S
N
e

Ia
.
F
or

b
in
ar
y

cl
as
si
fi
ca
ti
on

,
th
e

re
ve
rs
e

an
d

sh
u
✏
e

li
gh

t-
cu

rv
es

ob
ta
in

th
e
la
rg
es
t
n
u
m
b
er

of
cl
as
si
fi
ca
ti
on

s
as

S
N
e

Ia
,

6.
2%

an
d

3.
9%

re
sp

ec
ti
ve
ly

w
it
h

th
e

va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d

le
ss

th
an

3%
fo
r
th
e
B
B
B
.
M
an

y
of

th
es
e
li
gh

t-
cu

rv
es

re
se
m
b
le

su
p
er
n
ov
ae
,
sp

ec
ia
ll
y
w
it
h
li
gh

t-
cu

rv
es

w
it
h
lo
w

si
gn

al
-t
o-
n
oi
se
.
F
or

th
e
si
n
u
so
id
al

an
d
ra
n
-

d
om

li
gh

t-
cu

rv
es

le
ss

th
an

3%
ar
e
cl
as
si
fi
ed

as
S
N
e
Ia

in
th
e
va
ri
at
io
n
al

im
p
le
m
en
ta
ti
on

an
d
<

3.
94

%
fo
r
B
as
el
in
e

an
d

B
B
B

im
p
le
m
en
ta
ti
on

s.
T
h
e
n
et
w
or
k
se
em

s
to

ch
ar
ac
-

te
ri
ze

ty
p
e
Ia

su
p
er
n
ov
ae

w
el
l
an

d
th
er
ef
or
e
cl
as
si
fi
es

m
os
t

O
O
D

ev
en
ts

as
co
re
-c
ol
la
p
se

su
p
er
n
ov
ae

as
ca
n
b
e
se
en

in
F
ig
u
re

8.
In

te
rn
ar
y
an

d
se
ve
n
-w

ay
cl
as
si
fi
ca
ti
on

th
e
m
os
t

co
m
m
on

p
re
d
ic
ti
on

s
fo
r
O
O
D

ev
en
ts

ar
e
ty
p
es

II
:
II
n
,
II
p
,

II
L
1.

M
N
R
A
S
0
0
0
,
1
–1

7
(2
0
18

)

12

M
¨oller
&
de
B
oissi`ere

F
ig
u
re
6
.
C
alib
ratio
n
o
f
classifi
catio
n
a
lg
orith
m
s.
T
o
p
:
relia
b
ility

d
iag
ra
m
sh
ow
in
g
th
e
ca
lib
ra
tion
fo
r
S
A
L
T
2
fi
tted
d
ata
set
cla
ssi-

fi
ca
tio
n
for
a
sin
g
le
seed
.
W
e
u
se
th
e
m
ost
a
ccu
ra
te
co
n
fi
gu
ra
-

tion
s
for
th
e
R
a
n
d
o
m

F
orest
(red
circles),
B
a
selin
e
R
N
N
(p
u
r-

p
le
tria
n
gles),
V
a
ria
tio
n
al
R
N
N
(yellow
circles)
a
n
d
B
B
B
R
N
N
s

(b
lu
e
tria
n
g
les).
B
otto
m
:
d
isp
ersio
n
fro
m
p
erfectly
ca
lib
rated
a
l-

g
orith
m
s.
N
o
te
th
a
t
th
e
R
an
d
om

F
o
rest
a
lgo
rith
m

h
a
s
a
larg
e

d
ev
iatio
n
fro
m
p
erfect
ca
lib
ratio
n
w
h
ile
th
e
R
N
N
s
a
re
b
etter
cal-

ib
ra
ted
th
a
n
th
is
a
lg
orith
m
w
ith
th
e
B
B
im
p
lem
en
tatio
n
a
lm
ost

p
erfectly
ca
lib
ra
ted
.

d
istrib
u
tion
of
m
agn
itu
d
es
an
d
red
sh
ifts
for
b
oth
d
atasets

is
sh
ow
n
in
F
igu
re
7.
T
o
in
vestigate
th
e
d
iscrep
an
cy
b
e-

tw
een
sp
ectroscop
ic
an
d
p
h
otom
etric
sam
p
les,
w
e
train
w
ith

th
e
n
on
-rep
resen
tative
d
ataset
an
d
evalu
ate
th
e
classifi
ca-

tion
p
erform
an
ce
for
th
e
test
sam
p
le
in
th
e
rep
resen
tative

d
ataset.

F
or
classifi
cation
w
ith
n
o
red
sh
ifts
u
sin
g
th
e
B
aselin
e

an
d
V
ariation
al
R
N
N
s
w
e
fi
n
d
th
at
th
e
accu
racy
is
red
u
ced

b
y
0.3%
w
h
en
train
ed
w
ith
a
n
on
-rep
resen
tative
d
ataset.
A
l-

th
ou
gh
sm
all,
th
is
variation
is
n
ot
w
ith
in
th
e
u
n
certain
ties

of
ou
r
m
o
d
el
accu
racies.

A
s
d
iscu
ssed
in
S
ection
4.4,
B
ayesian
R
N
N
s
can
cap
tu
re

e
p
is
te
m
ic
u
n
c
e
r
ta
in
ty
w
h
ich
in
clu
d
es
th
e
lack
of
d
iversity
in

th
e
m
o
d
el’s
train
in
g
set.
T
h
erefore,
w
e
ex
p
ect
a
B
ayesian

R
N
N
train
ed
on
n
on
-rep
resen
tative
set
(in
ou
r
case,
th
e
fu
ll

S
A
L
T
2
fi
tte
d
d
ataset)
to
b
e
m
ore
u
n
certain
th
an
on
e
train
ed

on
a
rep
resen
tative
set
(in
ou
r
case,
a
su
b
set
of
th
e
c
o
m
-

p
le
te

d
ataset)
w
h
en
evalu
atin
g
on
said
rep
resen
tative
set.

T
o
q
u
an
tify
th
is
in
a
rigorou
s
w
ay,
w
e
u
se
th
e
tw
o
m
etrics

in
tro
d
u
ced
in
S
ection
4.4.1.
W
e
fi
n
d
b
oth
m
etrics
to
b
e
p
os-

itive
for
all
B
R
N
N
s,
�
µ
>
0.005
an
d
�
H

>
0.01.

T
h
e
lack
of
rep
resen
tativ
ity
an
d
th
e
lim
itation
s
of
su
-

p
ern
ova
tem
p
lates
are
m
a
jor
issu
es
in
S
N
p
h
otom
etric
clas-

sifi
cation
.
R
ecen
tly,
Ish
id
a
et
al.
(2018)
in
tro
d
u
ced
a
fram
e-

w
ork
for
th
e
op
tim
ization
of
sp
ectroscop
ic
follow
-u
p
re-

sou
rces
to
im
p
rove
S
N
p
h
otom
etric
classifi
cation
d
atasets.

B
ayesian
R
N
N
u
n
certain
ties
m
ay
b
e
a
p
rom
isin
g
in
d
icator

F
ig
u
re
7
.
D
istrib
u
tio
n
s
o
f
m
ax
im
u
m
o
b
serv
ed
b
rig
h
tn
ess
(m
ag
),

in
all
D
E
S
fi
lters
(g
,i,r,
z),
an
d
o
f
sim
u
la
ted
red
sh
ift
fo
r
S
A
L
T
2

fi
tted
(left
y
ellow
)
a
n
d
co
m
p
lete
(righ
t
b
lu
e)
d
a
ta
sets.
M
a
x
im
u
m

o
b
served
b
rig
h
tn
ess
is
sh
ow
n
fo
r
ty
p
e
Ia
a
n
d
n
on
-Ia
sam
p
les
w
h
ile

sim
u
la
ted
red
sh
ift
is
sh
ow
n
fo
r
each
o
f
th
e
ava
ilab
le
tem
p
la
tes.

D
a
sh
ed
lin
es
sh
ow
th
e
m
ed
ia
n
a
n
d
fi
rst
q
u
a
rtile
o
f
th
e
d
istri-

b
u
tio
n
.
T
h
e
co
m
p
lete
a
n
d
S
A
L
T
2
fi
tted
d
ata
sets
p
ro
b
e
sim
ilar

p
ara
m
eter
sp
ace
b
u
t
h
ave
d
i↵
eren
t
d
istrib
u
tion
s.
T
h
is
is
sim
ilar

to
w
h
at
is
ex
p
ected
o
f
n
o
n
-rep
resen
tativ
e
sam
p
les.

to
select
follow
-u
p
can
d
id
ates
for
th
is
p
u
rp
ose.
T
h
is
is
an

in
terestin
g
p
ossib
ility
w
h
ich
w
e
leave
for
fu
tu
re
w
ork
.

5
.3

O
u
t
o
f
d
istrib
u
tio
n
lig
h
t-cu
rv
e
s
(O
O
D
)

In
astron
om
y,
as
in
an
y
oth
er
classifi
cation
ap
p
lication
,
th
e

gen
eralization
p
rop
erties
of
a
classifi
er
an
d
its
b
eh
av
ior
on

u
n
seen
,
p
ossib
ly
ou
t-of-d
istrib
u
tion
sam
p
les
rep
resen
ts
a

ch
allen
ge.
In
th
is
section
w
e
stu
d
y
th
e
p
erform
an
ce
of
S
u
-

p
erN
N
ova
w
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves.

W
e
test
fou
r
d
i↵
eren
t
ty
p
es
of
O
O
D
s:
tim
e
reversed
ligh
t-

cu
rves,
ran
d
om
ly
sh
u
✏
ed
ligh
t-cu
rves,
ran
d
om
fl
u
x
es
an
d
a

sin
u
soid
al
sign
al.
T
h
e
latter
tw
o
w
ere
gen
erated
u
sin
g
th
e

sam
e
cad
en
ce
an
d
fl
u
x
ran
ge
as
n
orm
al
su
p
ern
ovae.
T
h
ese

ligh
t-cu
rves
are
on
ly
u
sed
for
testin
g
an
d
w
ere
n
ot
u
sed
for

train
in
g
at
an
y
tim
e.

W
h
en
classify
in
g
ou
t-of-d
istrib
u
tion
ligh
t-cu
rves,allS
u
-

p
erN
N
ova
algorith
m
s
rarely
classify
th
ese
ligh
t-cu
rves
as

S
N
e
Ia.
F
or
b
in
ary
classifi
cation
,
th
e
reverse
an
d
sh
u
✏
e

ligh
t-cu
rves
ob
tain
th
e
largest
n
u
m
b
er
of
classifi
cation
s
as

S
N
e
Ia,
6.2%
an
d
3.9%
resp
ectively
w
ith
th
e
variation
al

im
p
lem
en
tation
an
d
less
th
an
3%
for
th
e
B
B
B
.
M
an
y
of

th
ese
ligh
t-cu
rves
resem
b
le
su
p
ern
ovae,
sp
ecially
w
ith
ligh
t-

cu
rves
w
ith
low
sign
al-to-n
oise.
F
or
th
e
sin
u
soid
al
an
d
ran
-

d
om

ligh
t-cu
rves
less
th
an
3%
are
classifi
ed
as
S
N
e
Ia
in

th
e
variation
al
im
p
lem
en
tation
an
d
<
3.94%
for
B
aselin
e

an
d
B
B
B
im
p
lem
en
tation
s.
T
h
e
n
etw
ork
seem
s
to
ch
arac-

terize
ty
p
e
Ia
su
p
ern
ovae
w
ell
an
d
th
erefore
classifi
es
m
ost

O
O
D
even
ts
as
core-collap
se
su
p
ern
ovae
as
can
b
e
seen
in

F
igu
re
8.
In
tern
ary
an
d
seven
-w
ay
classifi
cation
th
e
m
ost

com
m
on
p
red
iction
s
for
O
O
D
even
ts
are
ty
p
es
II:
IIn
,
IIp
,

IIL
1.

M
N
R
A
S
0
0
0
,
1
–1
7
(2
0
18
)
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M
öl
le
r
&

de
B
oi
ss
iè
re

F
ig
u
re

6
.
C
al
ib
ra
ti
o
n
o
f
cl
as
si
fi
ca

ti
o
n
a
lg
or
it
h
m
s.
T
o
p
:
re
li
a
b
il
it
y

d
ia
g
ra
m

sh
ow

in
g
th

e
ca

li
b
ra
ti
on

fo
r
S
A
L
T
2
fi
tt
ed

d
at
a
se
t
cl
a
ss
i-

fi
ca

ti
o
n

fo
r
a

si
n
g
le

se
ed

.
W

e
u
se

th
e
m
os
t
a
cc
u
ra
te

co
n
fi
gu

ra
-

ti
on

s
fo
r
th

e
R
a
n
d
o
m

F
or
es
t
(r
ed

ci
rc
le
s)
,
B
a
se
li
n
e
R
N
N

(p
u
r-

p
le

tr
ia
n
gl
es
),

V
a
ri
a
ti
o
n
al

R
N
N

(y
el
lo
w

ci
rc
le
s)

a
n
d
B
B
B

R
N
N
s

(b
lu
e
tr
ia
n
g
le
s)
.
B
ot
to
m
:
d
is
p
er
si
o
n
fr
o
m

p
er
fe
ct
ly

ca
li
b
ra
te
d
a
l-

g
or
it
h
m
s.

N
o
te

th
a
t
th

e
R
an

d
om

F
o
re
st

a
lg
o
ri
th

m
h
a
s
a

la
rg
e

d
ev

ia
ti
o
n
fr
o
m

p
er
fe
ct

ca
li
b
ra
ti
o
n
w
h
il
e
th

e
R
N
N
s
a
re

b
et
te
r
ca

l-
ib
ra
te
d
th

a
n
th

is
a
lg
or
it
h
m

w
it
h
th

e
B
B

im
p
le
m
en

ta
ti
o
n
a
lm

os
t

p
er
fe
ct
ly

ca
li
b
ra
te
d
.

d
is
tr
ib
u
ti
on

of
m
ag

n
it
u
d
es

an
d

re
d
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SuperNNova: SN Bayesian photometric classification 13

Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.
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formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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Figure 4. A recurrent network on MNIST. This RNN is able to
obtain similar prediction behaviour as Figure 1 which is what is
expected for OOD events.

Figure 5. A Variational Dropout recurrent network on MNIST.
This network collapses and outputs high-certainty predictions for
OOD images.

with high probability while the bayesian network exhibits
large variance for multiple classes.

While we have verified that tuning the various hyper-
parameters improves the uncertainty performance on this
qualitative examination, it is clear that the behaviour of
Bayesian recurrent networks should be critically analyzed:
the network remains at risk to collapse its predictions when
fed with unrelated data. This sheds light on the negative �H

found in Section 5.3: for OOD data, which looks nothing like
the training data, the network likely collapses and outputs
a prediction with very high certainty, giving a very low en-
tropy score to the out of sample data. We note that this is
possibly exacerbated by the type of data used to train the
network: supernova fluxes indeed exhibit variations span-
ning multiple orders of magnitude which leads to persisting
artifacts even after normalization. Future work will focus on
characterizing this phenomenon and developing methods to
improve robustness on out-of-distribution data.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

Figure 6. A Bayesian By Backprop recurrent network on
MNIST. This network collapses and outputs high-certainty pre-
dictions for OOD images.

MNRAS 000, 1–18 (2018)

Page 18 of 18

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

SuperNNova: SN Bayesian photometric classification 13

Figure 8. Predicted classification percentages for best configura-
tion variational RNN. Columns indicate number of targets for the
classification (with probabilities summing one) and an additional
column indicating a low probability prediction, < 0.6, 0.4, 0.2
for 2, 3 and 7 classes respectively. Rows represent the di↵erent
light-curve types. All rows are out-of-distribution generated light-
curves except the row “SNe” representing our testing dataset.
Since the testing set has balanced classes, we expect the pre-
diction percentage in the row “SNe” to be balanced as well. Note
that the out-of-distribution events are rarely classified as type Ia
SNe (< 6.22% binary, < 4% ternary and < 1.5% in seven-way clas-
sification), the highest percentages in binary classification are for
OOD which can resemble SNe light-curves, e.g. reverse and shuf-
fle. In ternary and seven-way classification, out-of-distribution
events are preferably classified as type II, IIn or IIL1 SNe. Note
that the number of low probability detections are much higher for
OOD when classifying in three or seven classes.

To assess our model probability distributions with re-
spect to out-of-distribution events, we compute �H for our
best performing models comparing OOD and our complete

data test set predictions. For the binary classification prob-
lem, we find positive �H for random and reverse light-curves
for both the Variational and BBB implementations, with the
BBB having the largest entropy gap. Interestingly, for sinu-
soidal and shu✏e light-curves this metric is negative for the
Variational implementation. For the ternary and seven-way
problems, other OOD predictions are as well negative. This
is unexpected behaviour which we explore in Appendix 7
where we conclude that RNNs are at risk of collapse on
predicting a single class with high probability. Additionally,
we show the di↵erence behaviours for classification of OOD
events in a seven-way classification in Figure 9.

Figure 9. Out-of-distribution and SN light-curve prediction dis-
tribution for best variational configuration without redshift in-
formation for seven-way classification. First column depict light-
curves, second column their classification probabilities. First four
rows show SNe light-curves while last four rows are out-of-
distribution events. For random and sinusoidal light-curves the
classification probabilities are concentrated, giving a misleading
high-certainty of classification and therefore entropy. The ex-
pected behaviour for out-of-distribution predictions is better rep-
resented by shu✏e and reverse events shown in the last row. These
events have either low predicted probabilities or large uncertain-
ties in the predictions.

5.4 Type Ia supernova cosmology

Current and future surveys such as DES, PanSTARRS and
LSST will use photometrically classified type Ia supernovae
for their cosmological analyses. In this Section we examine
the properties of type Ia supernova samples classified by
SuperNNova.

To study of the expansion of the Universe, type Ia su-
pernovae are used to measure distance modulus as a function
of redshift. We can compute the distance modulus, µ, of a
given type Ia supernova:

µ = mB + ↵x1 � �c + M, (13)

where M is the absolute magnitude of the SNIa, mB is
the rest-frame B magnitude (at peak luminosity), x1 is the
stretch parameter and c is the color. The last three param-
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but… BNNs can give us high-
probability but large 

uncertainty

& anomalies

Möller + 2019“an increase in average classification uncertainties for these anomalies”

7-way classification 
Ia, Ib, Ic, IIn, II-P, IIL1, IIl2



summary

supernnova/SuperNNova

- ingests “observed data”: no interpolation necessary 


- High accuracy for complete and partial light-curves


- Exploring the use BNNs as meaningful probabilities


- fast: can classify up to 2,000 lcs/s

Möller + 2019

https://supernnova.readthedocs.io

- reproducible: data available 
10.5281/zenodo.3265189


- Open source


- Documented!

https://github.com/supernnova/SuperNNova

