Introduction 00000	Definition of Concepts 0 0000		Experiments and Results	Conclusion	References 0
	00	000 000			

Uncertain Shapelet Transform: A Shapelet-based Approach for Uncertain Time Series Classification

Michael Franklin Mbouopda and Engelbert Mephu Nguifo

Laboratory of Computing, Modelling and Optimization of the Systems - LIMOS

October 11, 2019

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0				

Context: TransiXplore project

- Aims to study astronomical transient objects
- Objects are represented by their light curve
- Light curves are subject to uncertainty
- Uncertainty is explicitly expressed
- Physicists think that a shapelet-approach could work well

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Contents

Introduction

2 Definition of Concepts

3 Uncertain Shapelet Transformation

- Uncertainty propagation
- Uncertain Euclidean Distance
- Uncertain data classification

Experiments and Results

Conclusion

Intro	oduction	Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
•oc	000	0				

Contents

1 Introduction

- 2 Definition of Concepts
- 3 Uncertain Shapelet Transformation
- ④ Experiments and Results

5 Conclusion

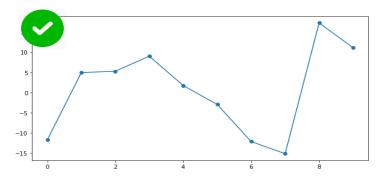
Definition of Concepts	Experiments and Results	Conclusion 00	References 0

Introduction

- **Time series classification**: *classification* of objects modelized as *time series*. ex: Plasstic challenge
- Time series: sequence of chronologycal data
- Application: Physics, Medicine, Engineering, ...
- Very active field

Introduction	Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
00000	0				

State of the art

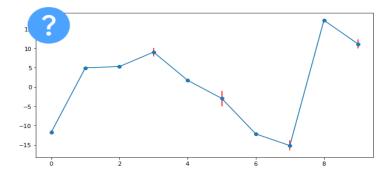


Many classification methods

- Machine learning-based [Bagnall et al., 2017]: **Shapelet Transform**, BOOS, etc
- Deep learning-based [Fawaz et al., 2019b]: ResNet, FCN, etc
- Composition-based [Lines et al., 2018]: HIVE-COTE, FLAT-COTE

Introduction	Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
00000	0				

State of the art



No method found for uncertain time series, but we have

- Error analysis strategies [Taylor, 1996]
- Uncertain supervised classifiers: UDT[Tsang, Kao, Yip, Ho, and Lee, 2009]

Introduction	Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
00000	0				

Our motivation and method

Motivation

- Uncertainty cannot be eliminated [Taylor, 1996]
- Explicitly take uncertainty into account when it is available will lead to more accurate results

Method

- Propagate uncertainty in shapelet transformation
- **2** Use an uncertain supervised classifier

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Contents

Introduction

2 Definition of Concepts

3 Uncertain Shapelet Transformation

4 Experiments and Results

5 Conclusion

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0				

Time series

Time series (without uncertainty)

Sequence of m chronological values. m is the time series length.

$$T = \{t_1, t_2, ..., t_m\}$$

Uncertain time series

A time series where each value has an uncertainty. We represent uncertainty as follow.

$$x = x_{best} \pm \delta x$$

Subsequence

Sequence of I consecutive values of a time series starting at position i

$$S = \{t_{i+1}, ..., t_{i+l}\}$$

M. F. MBOUOPDA (LIMOS)

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Notion of distance

Let $S = \{s_1, s_2, ..., s_l\}$ and $R = \{r_1, r_2, ..., r_l\}$ be two subsequences of same length *l*.

Distance between subsequences

$$ED(S, R) = \frac{1}{l} \sum_{i=1}^{l} (s_i - r_i)^2.$$

Let $T = \{t_1, t_2, ..., t_m\}$ be a time series of length m, m > l

Distance between subsequence and time series

$$\mathsf{ED}(S, T) = \min\{\mathsf{ED}(S, R) \ \forall R \in T\}$$

M. F. MBOUOPDA (LIMOS)

イロト 不得 トイラト イラト 一日

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0				

Notion of separation

Le D be a set of time series

Separator

sp is a sperator of D if it divides D in two sets D_1 and D_2 such that

$$D_1 = \{ T \mid \mathsf{ED}(T, sp) \leq \epsilon, \forall T \in D \},$$

$$D_2 = \{T \mid \mathsf{ED}(T, sp) > \epsilon, \forall T \in D\}, \epsilon \in R.$$

Information Gain

It is a measurement of the quality of a separator.

$$IG(D, sp) = H(D) - (\frac{|D_1|}{|D|}H(D_1) + \frac{|D_2|}{|D|}H(D_2))$$

H(D) is the entropy on the dataset D

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0				

Notion of Shapelet

Horned Lezard and turtle can be differenciated by the presence of horns. No need to examine every part of the body.

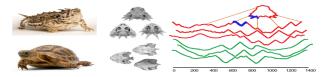


Figure 1: Horned Lizard vs Turtle.

Shapelet

It is a separator that maximizes the information gain.

$$S = \operatorname*{argmax}_{sp}(IG(D, sp))$$

Introduction Definition	of Concepts Uncertain Shapelet	t Transformation Experiments a	nd Results Conclusion Refe	
00000 0				

Shapelet-based classification

General idea

Given a dataset of time series:

- **1** Select the first k shapelets
- ② Compute feature vectors: vectors of distances to shapelets
- Itrain a classifier on the set of feature vector.

Advantages of shapelet-based classification

- Interpretability
- Robustness
- Rapid inference

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Shapelet-based classification

Illustration

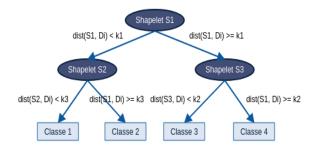


Figure 2: Shapelet decision tree illustration

э

< □ > < □ > < □ > < □ > < □ > < □ >

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0	•			

Contents

Introduction

2 Definition of Concepts

3 Uncertain Shapelet Transformation

- Uncertainty propagation
- Uncertain Euclidean Distance
- Uncertain data classification

4 Experiments and Results

Conclusion

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0				

Uncertainty propagation techniques

Let $x = x_{best} \pm \delta x$ and $y = y_{best} \pm \delta y$. From the book "An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements" [Taylor, 1996] we have:

Addition and substraction

$$x + y = (x_{best} + y_{best}) \pm (\delta x + \delta y)$$
$$x - y = (x_{best} - y_{best}) \pm (\delta x + \delta y)$$

Multiplication and division

$$x \cdot y = (x_{best} \cdot y_{best}) \pm (\delta x \cdot |y_{best}| + \delta y \cdot |x_{best}|)$$

$$\frac{x}{y} = \left(\frac{x_{best}}{y_{best}}\right) \pm \left(\frac{\delta x \cdot |y_{best}| + \delta y \cdot |x_{best}|}{|y_{best}|^2}\right)$$

M. F. MBOUOPDA (LIMOS)

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Uncertain Euclidean Distance

Let $S \pm \delta S = \langle s_1 \pm \delta s_1, s_2 \pm \delta s_2, ..., s_l \pm \delta s_l \rangle$ and $R \pm \delta R = \langle r_1 \pm \delta r_1, r_2 \pm \delta r_2, ..., r_l \pm \delta r_l \rangle$ be two uncertain subsequences. If they were not uncertain, then ST algorithm would compute the distance between them as follow:

$$ED(S,R) = \frac{1}{l} \sum_{i=1}^{l} (s_i - r_i)^2$$

Using the previous propagation techniques we define **UED** as follow:

$$UED(S \pm \delta S, R \pm \delta R) = (\frac{1}{l}\sum_{i=1}^{l}(s_i - r_i)^2) \pm (\frac{2}{l}\sum_{i=1}^{l}|s_i - r_i| \times (\delta s_i + \delta r_i))$$

$$UED(S \pm \delta S, R \pm \delta R) = ED(S, R) \pm \left(\frac{2}{l}\sum_{i=1}^{l} |s_i - r_i| \times (\delta s_i + \delta r_i)\right)$$

	Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
	0				

Ordering uncertain measures

Let $x = x_{best} \pm \delta x$ and $y = y_{best} \pm \delta y$, we have the following properties:

•
$$x = y$$
 if and only if $x_{best} = y_{best}$ and $\delta x = \delta y$

• x < y if and only if one of the following conditions is satisfied:

•
$$x_{best} < y_{best}$$

• $x_{best} = y_{best}$ and $\frac{\delta x}{x_{best}} < \frac{\delta y}{y_{best}}$

We can now define the uncertain distance between an uncertain time series $T \pm \delta T$ and a subsequence $S \pm \delta S$

Definition

Uncertain distance between time series and subsequence

 $UED(S \pm \delta S, T \pm \delta T) = \min\{UED(S \pm \delta S, R \pm \delta R) \ \forall R \pm \delta R \in T \pm \delta T\}$

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Uncertain data classification

Flat representation

- Represent each uncertain data by a flat vector
- The first half of the vector contains best guesses and the second half contains uncertainties

Illustration

T: an uncertain time series *X*: [*udist*₁, *udist*₂, ..., *udist*_k], where *udist*_j = *UED*(*T*, *shapelet*_j) = $d_j \pm \delta d_j$, then: *Flat*(*X*) = [$d_1, d_2, ..., d_k, \delta d_1, \delta d_2, ..., \delta d_k$]

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000				

Uncertain data classification

Flat Classification of uncertain time series

Figure 3: Flat classification archtecture

Pros

- Simplicity
- Uncertainty is taken into account through all the process

Cons

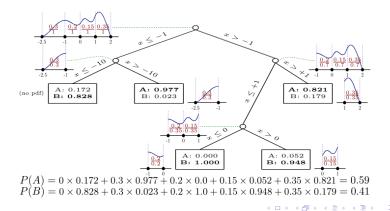
- Risk of having large flattened vectors.
- The classifier used (FlatTr_Classifier) is not aware of uncertainty

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References	
0000					

Uncertain data classification

Uncertain decision tree classifier: an Overview

- Proposed by Tsang et al. [2009]
- Awared of uncertainty in data



Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0		●0000		

Contents

Introduction

- 2 Definition of Concepts
- 3 Uncertain Shapelet Transformation
- 4 Experiments and Results

5 Conclusion

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0		0000		

Data source

- We used 21 datasets from UEA/UCR: http://www.timeseriesclassification.com/dataset.php
- These datasets do not have uncertainty

Uncertain datasets are obtained by adding generated uncertainty to each dataset. The generated uncertainty follows a zero-mean normal distribution.

	Definition of Concepts		Conclusion	References 0	

Source code

- Written in JAVA
- Extends the UEA/UCR time series classification source code
- Available on Github: https://github.com/frankl1/Uncertain-Shapelet-Transform

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
00000		00000		

Results

Accuracy comparison

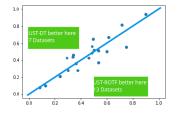


Figure 4: UST-DT vs UST-ROTF

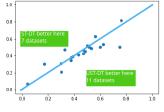


Figure 5: ST-DT vs UST-DT

- From figure 4 \rightarrow Classifier matter
- From figure 5 \rightarrow Handling uncertainty matter

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0000		00000		

Results Underfitted datasets

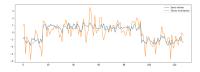


Figure 6: An instance from CBF

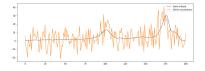


Figure 7: An instance from Fungi

- Generated uncertainty is very high
- Time series classifiers are **Very sensitive** to adversarial attack [Fawaz et al., 2019a; Karim et al., 2019]

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0			•0	

Contents

Introduction

- 2 Definition of Concepts
- 3 Uncertain Shapelet Transformation
- 4 Experiments and Results

< 1 k

Definition of Concepts	Uncertain Shapelet Transformation	Experiments and Results	Conclusion	References
0			00	

Conclusion

What we did

- We explored how to classify uncertain time series
- We proposed Uncertain Shapelet Transformation, which shown interesting results

What we will do

- Use a supervised classifier that is aware of uncertainty, for instance UDT[Tsang et al., 2009]
- Evaluate UST on a real uncertain datasets: TransiXplore data
- Evaluate UST on the remaining 117 UEA/UCR datasets

Introduction 00000	Definition of Concepts	Experiments and Results	Conclusion 00	References 0	
Refere	nces l				

- A. Bagnall, J. Lines, A. Bostrom, J. Large, and E. Keogh. The great time series classification bake off: a review and experimental evaluation of recent algorithmic advances. *Data Mining and Knowledge Discovery*, 31 (3):606–660, 2017.
- M. Dallachiesa, B. Nushi, K. Mirylenka, and T. Palpanas. Uncertain Time-Series Similarity: Return to the Basics. arXiv e-prints, art. arXiv:1208.1931, Aug 2012.
- H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Adversarial attacks on deep neural networks for time series classification, 2019a.
- H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time series classification: a review. *Data Mining and Knowledge Discovery*, 33(4):917–963, 2019b.

Introduction 00000	Definition of Concepts	Experiments and Results	Conclusion 00	References 0	
Refere	nces II				

- J. Grabocka, N. Schilling, M. Wistuba, and L. Schmidt-Thieme. Learning time-series shapelets. In *Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 392–401. ACM, 2014.
- J. Hills, J. Lines, E. Baranauskas, J. Mapp, and A. Bagnall. Classification of time series by shapelet transformation. *Data Mining and Knowledge Discovery*, 28(4):851–881, 2014.
- F. Karim, S. Majumdar, and H. Darabi. Adversarial attacks on time series, 2019.
- J. Lines, S. Taylor, and A. Bagnall. Time series classification with hive-cote: The hierarchical vote collective of transformation-based ensembles. *ACM Trans. Knowl. Discov. Data*, 12(5):52:1–52:35, July 2018. ISSN 1556-4681.

Introduction 00000	Definition of Concepts	Experiments and Results	Conclusion	References 0
Refere	nces III			

- T. Rakthanmanon and E. Keogh. Fast shapelets: A scalable algorithm for discovering time series shapelets. In proceedings of the 2013 SIAM International Conference on Data Mining, pages 668–676. SIAM, 2013.
- V. S. Siyou Fotso, E. Mephu Nguifo, and P. Vaslin. Frobenius correlation based u-shapelets discovery for time series clustering. Apr. 2018. working paper or preprint.
- J. R. Taylor. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books, 2 sub edition, 1996.
- S. Tsang, B. Kao, K. Y. Yip, W.-S. Ho, and S. D. Lee. Decision trees for uncertain data. *IEEE transactions on knowledge and data engineering*, 23(1):64–78, 2009.

(4) (日本)

Introduction 00000	Definition of Concepts	Experiments and Results	Conclusion 00	References 0

References IV

L. Ye and E. Keogh. Time series shapelets: a new primitive for data mining. In *Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining*, pages 947–956. ACM, 2009.

Thanks for your attention !

M. F. MBOUOPDA (LIMOS)

э

Image: A matrix