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Context: TransiXplore project

Aims to study astronomical transient objects

Objects are represented by their light curve

Light curves are subject to uncertainty

Uncertainty is explicitly expressed

Physicists think that a shapelet-approach could work well
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Introduction

Time series classification: classification of objects modelized as
time series. ex: Plasstic challenge

Time series: sequence of chronologycal data

Application: Physics, Medicine, Engineering, ...

Very active field
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State of the art

Many classification methods

Machine learning-based [Bagnall et al., 2017]: Shapelet Transform,
BOOS, etc

Deep learning-based [Fawaz et al., 2019b]: ResNet, FCN, etc

Composition-based [Lines et al., 2018]: HIVE-COTE, FLAT-COTE
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State of the art

No method found for uncertain time series, but we have

Error analysis strategies [Taylor, 1996]

Uncertain supervised classifiers: UDT[Tsang, Kao, Yip, Ho, and Lee,
2009]
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Our motivation and method

Motivation

Uncertainty cannot be eliminated [Taylor, 1996]

Explicitly take uncertainty into account when it is available will lead
to more accurate results

Method
1 Propagate uncertainty in shapelet transformation

2 Use an uncertain supervised classifier
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Time series

Time series (without uncertainty)

Sequence of m chronological values. m is the time series length.

T = {t1, t2, ..., tm}

Uncertain time series

A time series where each value has an uncertainty. We represent
uncertainty as follow.

x = xbest ± δx

Subsequence

Sequence of l consecutive values of a time series starting at position i

S = {ti+1, ..., ti+l}
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Notion of distance

Let S = {s1, s2, ..., sl} and R = {r1, r2, ..., rl} be two subsequences of same
length l .

Distance between subsequences

ED(S ,R) =
1

l

l∑
i=1

(si − ri )
2.

Let T = {t1, t2, ..., tm} be a time series of length m, m > l

Distance between subsequence and time series

ED(S ,T ) = min{ED(S ,R) ∀R ∈ T}
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Notion of separation

Le D be a set of time series

Separator

sp is a sperator of D if it divides D in two sets D1 and D2 such that

D1 = {T |ED(T , sp) ≤ ε , ∀T ∈ D},

D2 = {T |ED(T , sp) > ε ,∀T ∈ D}, ε ∈ R.

Information Gain

It is a measurement of the quality of a separator.

IG (D, sp) = H(D)− (
|D1|
|D|

H(D1) +
|D2|
|D|

H(D2))

H(D) is the entropy on the dataset D
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Notion of Shapelet

Horned Lezard and turtle can be differenciated by the presence of horns.
No need to examine every part of the body.

Figure 1: Horned Lizard vs Turtle.

Shapelet

It is a separator that maximizes the information gain.

S = argmax
sp

(IG (D, sp))
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Shapelet-based classification
General idea

Given a dataset of time series:

1 Select the first k shapelets

2 Compute feature vectors: vectors of distances to shapelets

3 train a classifier on the set of feature vector.

Advantages of shapelet-based classification

Interpretability

Robustness

Rapid inference
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Shapelet-based classification
Illustration

Figure 2: Shapelet decision tree illustration
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Uncertainty propagation techniques

Let x = xbest ± δx and y = ybest ± δy . From the book ”An Introduction
to Error Analysis: The Study of Uncertainties in Physical Measurements”
[Taylor, 1996] we have:

Addition and substraction

x + y = (xbest + ybest)± (δx + δy)

x − y = (xbest − ybest)± (δx + δy)

Multiplication and division

x · y = (xbest · ybest)± (δx · |ybest |+ δy · |xbest |)

x

y
= (

xbest
ybest

)± (
δx · |ybest |+ δy · |xbest |

|ybest |2
)
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Uncertain Euclidean Distance

Let S ± δS =< s1 ± δs1, s2 ± δs2, ..., sl ± δsl > and
R ± δR =< r1 ± δr1, r2 ± δr2, ..., rl ± δrl > be two uncertain subsequences.
If they were not uncertain, then ST algorithm would compute the distance
between them as follow:

ED(S ,R) =
1

l

l∑
i=1

(si − ri )
2

Using the previous propagation techniques we define UED as follow:

UED(S ± δS ,R ± δR) = (
1

l

l∑
i=1

(si − ri )
2)± (

2

l

l∑
i=1

|si − ri | × (δsi + δri ))

UED(S ± δS ,R ± δR) = ED(S ,R)± (
2

l

l∑
i=1

|si − ri | × (δsi + δri ))
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Ordering uncertain measures

Let x = xbest ± δx and y = ybest ± δy , we have the following properties:

x = y if and only if xbest = ybest and δx = δy

x < y if and only if one of the following conditions is satisfied:

xbest < ybest
xbest = ybest and δx

xbest
< δy

ybest

We can now define the uncertain distance between an uncertain time
series T ± δT and a subsequence S ± δS

Definition

Uncertain distance between time series and subsequence

UED(S ± δS ,T ± δT ) = min{UED(S ± δS ,R ± δR) ∀R ± δR ∈ T ± δT}
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Uncertain data classification
Flat representation

Represent each uncertain data by a flat vector

The first half of the vector contains best guesses and the second half
contains uncertainties

Illustration

T : an uncertain time series
X : [udist1, udist2, ..., udistk ], where
udistj = UED(T , shapeletj) = dj ± δdj , then:

Flat(X ) = [d1, d2, ..., dk , δd1, δd2, ..., δdk ]
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Uncertain data classification
Flat Classification of uncertain time series

Figure 3: Flat classification archtecture

Pros

Simplicity

Uncertainty is taken into account through all the process

Cons

Risk of having large flattened vectors.

The classifier used (FlatTr Classifier) is not aware of uncertainty
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Uncertain data classification
Uncertain decision tree classifier: an Overview

Proposed by Tsang et al. [2009]

Awared of uncertainty in data

M. F. MBOUOPDA (LIMOS) TransiXplore - Clermont October 11, 2019 19 / 29



Introduction Definition of Concepts Uncertain Shapelet Transformation Experiments and Results Conclusion References

Contents

1 Introduction

2 Definition of Concepts

3 Uncertain Shapelet Transformation

4 Experiments and Results

5 Conclusion

M. F. MBOUOPDA (LIMOS) TransiXplore - Clermont October 11, 2019 19 / 29



Introduction Definition of Concepts Uncertain Shapelet Transformation Experiments and Results Conclusion References

Data source

We used 21 datasets from UEA/UCR:
http://www.timeseriesclassification.com/dataset.php

These datasets do not have uncertainty

Uncertain datasets are obtained by adding generated uncertainty to each
dataset. The generated uncertainty follows a zero-mean normal
distribution.
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Source code

Written in JAVA

Extends the UEA/UCR time series classification source code

Available on Github:
https://github.com/frankl1/Uncertain-Shapelet-Transform
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Results
Accuracy comparison

Figure 4: UST-DT vs UST-ROTF Figure 5: ST-DT vs UST-DT

From figure 4 → Classifier matter

From figure 5 → Handling uncertainty matter
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Results
Underfitted datasets

Figure 6: An instance from CBF Figure 7: An instance from Fungi

Generated uncertainty is very high

Time series classifiers are Very sensitive to adversarial attack [Fawaz
et al., 2019a; Karim et al., 2019]
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Conclusion

What we did

We explored how to classify uncertain time series

We proposed Uncertain Shapelet Transformation, which shown
interesting results

What we will do

Use a supervised classifier that is aware of uncertainty, for instance
UDT[Tsang et al., 2009]

Evaluate UST on a real uncertain datasets: TransiXplore data

Evaluate UST on the remaining 117 UEA/UCR datasets
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Thanks for your attention !
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