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Context: TransiXplore project

@ Aims to study astronomical transient objects
@ Objects are represented by their light curve
o Light curves are subject to uncertainty

@ Uncertainty is explicitly expressed

@ Physicists think that a shapelet-approach could work well
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Introduction
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Introduction

e Time series classification: classification of objects modelized as
time series. ex: Plasstic challenge

o Time series: sequence of chronologycal data
@ Application: Physics, Medicine, Engineering, ...

@ Very active field
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State of the art

T T
] 2

Many classification methods
@ Machine learning-based [Bagnall et al., 2017]: Shapelet Transform,
BOOS, etc
@ Deep learning-based [Fawaz et al., 2019b]: ResNet, FCN, etc
e Composition-based [Lines et al., 2018]: HIVE-COTE, FLAT-COTE
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State of the art

No method found for uncertain time series, but we have

e Error analysis strategies [Taylor, 1996]
@ Uncertain supervised classifiers: UDT[Tsang, Kao, Yip, Ho, and Lee,

2009]
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Our motivation and method

Motivation

@ Uncertainty cannot be eliminated [Taylor, 1996]

o Explicitly take uncertainty into account when it is available will lead
to more accurate results

v

© Propagate uncertainty in shapelet transformation

@ Use an uncertain supervised classifier
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Definition of Concepts
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Time series

Time series (without uncertainty)

Sequence of m chronological values. m is the time series length.

T={ti,t2,...,tm}

Uncertain time series

A time series where each value has an uncertainty. We represent
uncertainty as follow.
X = Xpest T 0X

Subsequence

Sequence of / consecutive values of a time series starting at position |

S={tit1,. tit1}
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Definition of Concepts
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Notion of distance

Let S = {s1,52,...,5} and R = {r, ra,..., 1} be two subsequences of same
length /.

Distance between subsequences

ED

~_| =

I
=7 25—y

Let T = {t1, to, ..., tm} be a time series of length m, m > |

Distance between subsequence and time series

D(S, T) = min{ED(S,R) VR € T}
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Definition of Concepts
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Notion of separation

Le D be a set of time series

sp is a sperator of D if it divides D in two sets D; and D, such that

D; = {T |ED(T,sp) <e,VT € D},

D, = {T |ED(T,sp) > ¢,VT € D},e € R.

Information Gain

A\

It is a measurement of the quality of a separator.

1D1]
D]

H(Dy) + 122 h(Dy))

H(D) is the entropy on the dataset D
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Notion of Shapelet

Horned Lezard and turtle can be differenciated by the presence of horns.
No need to examine every part of the body.

I\M

= pei 88

P A

ﬁ“ a3
TR wX

Figure 1. Horned Lizard vs Turtle.

Shapelet
It is a separator that maximizes the information gain.

S = argmax(IG(D, sp))
sp
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Definition of Concepts

Shapelet-based classification

General idea

Given a dataset of time series:
@ Select the first k shapelets
@ Compute feature vectors: vectors of distances to shapelets

@ train a classifier on the set of feature vector.

Advantages of shapelet-based classification

@ Interpretability
@ Robustness

@ Rapid inference
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Definition of Concepts

Shapelet-based classification

Illustration

Shapelet 51
dist[S1, Di) < k1 dist(S1, Di) >= k1

Shapelet 52 Shapelet 53

dist(52, Di) < k3 51, Di)>=k3 dist(S3, Di) < k2 disi(S1, Di) »= k2

| Classe 1 | ‘ Classe 2 | | Classe 3 | | Classe 4 ‘

Figure 2: Shapelet decision tree illustration
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Uncertain Shapelet Transformation

Uncertainty propagation techniques

Let x = Xpest £ 0x and y = ypest £ dy. From the book " An Introduction
to Error Analysis: The Study of Uncertainties in Physical Measurements”
[Taylor, 1996] we have:

Addition and substraction

X+y= (Xbest + Ybest) + (5X + 5}/)
X—=y= (Xbest - }/best) + (5X + 5}/)

| A\

Multiplication and division

Xy = (Xbest : Ybest) + (6X : |Ybest| + 5}/ : |Xbest|)

X Xbest + OX * |Ybest| + 0y - |Xbest|)

y B Ybest |ybesir|2

v
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Uncertain Shapelet Transformation

Uncertain Euclidean Distance

Let S +0S =< 51 £ 51,5 £Isy,...,5 £ ds; > and
R+0R=<nrn=£dr,mnxtdmn,.., rnxdr > betwo uncertain subsequences.

If they were not uncertain, then ST algorithm would compute the distance
between them as follow:

\"—l

I
=725y

Using the previous propagation techniques we define UED as follow:

/

1
UED(Si(SS,Ri&R):(I;( Z|5, ri| x (8sj + 6r;))
UED(S + 6S,R + 6R) = ED(S,R) + Z|s, ri| x (0si + 6r;))
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Uncertain Shapelet Transformation

Ordering uncertain measures

Let x = Xpest £ 6x and y = ypest £ 0y, we have the following properties:
o x =y if and only if Xpest = Ypest and dx = Jdy
@ x < y if and only if one of the following conditions is satisfied:
® Xpest < Ybest

_ dx §
® Xpest = Ybest and Xbeer < }’bit

We can now define the uncertain distance between an uncertain time
series T £ 6T and a subsequence S + 45

Definition

Uncertain distance between time series and subsequence

UED(S +6S, T +6T) = min{UED(S +6S,R+6R) YR+ R € T +6T}
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Uncertain Shapelet Transformation

Uncertain data classification

Flat representation

@ Represent each uncertain data by a flat vector

@ The first half of the vector contains best guesses and the second half
contains uncertainties

T: an uncertain time series

X: [udisty, udisty, ..., udisty], where
udist; = UED(T, shapelet;) = d; & ddj, then:

F/at(X) = [dl, do,...,dg,0d1,0d>, ..., (5dk]
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Uncertain Shapelet Transformation

Uncertain data classification

Flat Classification of uncertain time series

Uncertaii S |
tai FlatTr_Classifier icti
Tii = Predicti
Sie -
taset
Figure 3: Flat classification archtecture
Pros

o Simplicity
@ Uncertainty is taken into account through all the process
@ Risk of having large flattened vectors.

@ The classifier used (FlatTr_Classifier) is not aware of uncertainty

v
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Uncertain Shapelet Transformation

Uncertain data classification

Uncertain decision tree classifier: an Overview

@ Proposed by Tsang et al. [2009]
@ Awared of uncertainty in data

oo par | Az 0172 A: 0.877
inopdi | 5. g.828 B: 0.023 %
B X
0 0.15
0.35 0.35
-1 0 1
R A: 0.000 A: 0.052 {)\1{
e B: 1.000 B: 0.948 0.15

P(A) =0x0.172 + 0.3 x 0.977 + 0.2 x 0.0+ 0.15 x 0.052 + 0.35 x 0.821 = 0.59
P(B) = 0% 0.828 + 0.3 % 0.023 + 0.2 x 1.0+ 0.15 % 0.948 + 0.35 x 0.179 = 0.41
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Experiments and Results
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Data source

e We used 21 datasets from UEA/UCR:
http://www.timeseriesclassification.com/dataset.php

@ These datasets do not have uncertainty

Uncertain datasets are obtained by adding generated uncertainty to each
dataset. The generated uncertainty follows a zero-mean normal
distribution.
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Source code

@ Written in JAVA
o Extends the UEA/UCR time series classification source code

@ Available on Github:
https://github.com/frankll/Uncertain-Shapelet-Transform
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Results

Accuracy comparison

UST-DT better here
7 Datasets

I

[ST-DT better here
7 datasets

02 IST-DT better here
IST-ROTF better here 1 datasets
EDEEES o0

00 02 04 06 08 10 00 0z 04 06 08 10

Figure 4: UST-DT vs UST-ROTF Figure 5: ST-DT vs UST-DT

@ From figure 4 — Classifier matter

@ From figure 5 — Handling uncertainty matter
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Results
Underfitted datasets

WA ML A
AW A

Figure 6: An instance from CBF Figure 7: An instance from Fungi
@ Generated uncertainty is very high

e Time series classifiers are Very sensitive to adversarial attack [Fawaz
et al., 2019a; Karim et al., 2019]
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Conclusion

What we did
@ We explored how to classify uncertain time series

@ We proposed Uncertain Shapelet Transformation, which shown
interesting results

What we will do

@ Use a supervised classifier that is aware of uncertainty, for instance
UDT|[Tsang et al., 2009]

@ Evaluate UST on a real uncertain datasets: TransiXplore data
e Evaluate UST on the remaining 117 UEA/UCR datasets
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Thanks for your attention !
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