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Much less theoretical contribs
submitted than actual effort!

Contribs from:
IPNL

and
LAMA+LAPTh+LPSC+LUPM+QObs.Stras. (IN2P3/INP/INSU)



The cold Dark Matter (CDM) paradigm

CDM
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scale

So far, only gravitational evidence for DM
(cosmological structures+tCMB)

CDM successes:

* CMB peaks

* Successful structure formation (from CMB perturbations)
=> CDM seeds galaxies, galaxies embedded in DM halos

* Lensing in clusters + rotation curves of galaxies

* Also consistent with Tully-Fisher relation (baryonic physics)
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The cold Dark Matter (CDM) paradigm

CDM

E =10, WOM

Bose+16

WDM

z =B, WD

=1, DM

Galactic

T =0, WON

scale

So far, only gravitational evidence for DM
(cosmological structures+tCMB)

CDM successes:

* CMB peaks

* Successful structure formation (from CMB perturbations)
=> CDM seeds galaxies, galaxies embedded in DM halos

* Lensing in clusters + rotation curves of galaxies

* Also consistent with Tully-Fisher relation (baryonic physics)

Not a 2-sigma tension

Assumptions: ‘
General relativity applied to cosmologyk %
- Standard particle + nuclear physics



Dark Matter on galactic scales

Bulk of luminous matter

Rubin, Ford & Thonnard ‘80

21 galaxies’ rotation curves
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Ostriker+’74 => spherical dark matter halos!

4 of rotation velocity
* Stars and gas not bounded to the object unless invisible mass there
=> Spherical dark matter halo could explain this + natural stabilizer




CDM issues on small (subgalactic) scales

arXiv:1707.04256
James S. Bullock! and Michael Boylan-Kolchin?

1Department of Physics and Astronomy, University of California, Irvine, CA
92697, USA; email: bullock@uci.edu

2Department of Astronomy, The University of Texas at Austin, 2515 Speedway,
Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu
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Measurements

Core/cusp+diversity problems or regularity vs. diversity problems.
Maybe baryonic effects, but clear statistical answer needed.
Does same feedback recipe solve all problems at once?




CDM issues on small (subgalactic) scales
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Measurements

Core/cusp+diversity problems or regularity vs. diversity problems.
Maybe baryonic effects, but clear statistical answer needed.
Does same feedback recipe solve all problems at once?




Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use



Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use

Liouville's theorem for non-interacting fermions, assuming they were close to FD distribution in early universe
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Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use

Pauli exclusion principle (no assumption on initial phase space): cannot exceed density of degenerate Fermi gas!

v

30km/s




Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use
— Updated by Boyarsky+09: m> 0.5 keV

de Broglie wavelength > size of system => m > 10’ eV
— see review 1n e.g. Marsh '15 (axion-like particles)



Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use
— Updated by Boyarsky+09: m> 0.5 keV

de Broglie wavelength > size of system => m > 10’ eV
— see review 1n e.g. Marsh '15 (axion-like particles)

Lower mass bounds only!
(except for unitarity constraints — thermal case)
— m< 100 TeV
(see Griest & Kamionkowski ‘90)




Generic constraints on DM particles

— Assume a single DM species:
* Massive

* Cold or close to cold (or cold-warm):
CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For DM produced thermally in the early universe: m > 1-5 keV (bosons or fermions)
=> For DM produced non thermally in the early universe: particle statistics matters!

the Tremaine-Gunn limit ('78) => use
— Updated by Boyarsky+09: m> 0.5 keV

de Broglie wavelength > size of system => m > 10’ eV
— see review 1n e.g. Marsh '15 (axion-like particles)

* Interactions?
— Electrically neutral (or charge << 1: milli-charged — except in secluded dark sector)
— If thermally produced => (weak) couplings to SM particles

— No prejudice on asymmetry dark matter/antimatter O solf
— Self-interactions and/or annihilations allowed 2¢m> / g~4pb / GeV 5 i 5 0.4 b / GeV
but SI cross sections bounded m

— Possibility of entire dark sector(s)

X

To solve core-cusps Dynamics of
(e.g. Spergel+’00, clusters
Calabrese+’16) (Kaplinghat+’15)

Original proposal by
Carlson+’92



(Self-interacting dark matter — SIDM)

Kaplinghat+’15
See also review in Tulin & Yu ‘17 Cluster A2537 NFW SIDM

e

self —interacting 7y  collisionless

DM density (MQ/kpc3)

radius (kpc) 1

radius (kpc)

- IC2574
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Combine constraints on small/large scales
=> yelocity-dependent cross section



Two main approaches

* Top-down
“DM is a consequence”

* Bottom-up
“DM is a requirement”

Model building

* Motivated by “defects” in SM
- Asymmetry matter-antimatter not achieved
- Strong CP pb
- Stability of the Higgs sector (hierarchy pb)
- Metastability of EW vacuum
- Flavor hierarchy
- Gauge unification
- Quantum gravity (strings)
- etc.

+++ may solve several issues + DM candidates
- - - DM “solution” potentially embedded in
large parameter space (tricky phenomenology)

* Motivation from Cosmology
- scalar field cosmology (for the sake of itself)
- non-minimal inflation (primordial black holes)

* Consistent QFT
+++ Production mechanism/s
+++ DM phenomenology with a minimal set of
parameters => predictive
- - - built on purpose (ad hoc)



Model building

The hierarchy pb (Higgs stability),
aka the theoretical particle physics crisis

Two main approaches

(e.g. Csaki & Tanedo '16)

Higgs mass receives quantum corrections
* Top-down — very sensitive to any new heavy scale (fine tuning)

“DM is a consequence”
q * Might be cured by adding canceling terms

* e.g. Supersymmetry => bosons <> fermions cancel in loops
* want to forbid new interactions, like: STANDARD
— discrete symmetry (parity, Z2, etc.)

=> proton does not decay

=> lightest particle stable

. : o STANDARD
DM: neutralino, sneutrino, gravitino, etc.
+QCD axion DM, “string-inspired” axions (eg ULA)
+(Sterile) right-handed neutrino DM
+Others (e.g. relaxions ...)

* Consistent QFT
* Bottom-up > +++ Production mechanism/s
“DM is a requirement” +++ DM phenomenology with a minimal set of
parameters => predictive
- - - built on purpose (ad hoc)




Status of current searches

* WIMPs (thermal DM)
+ “Portal models”

- Many ongoing experiments
(multiwavelength, multimessenger +
laboratory)

- Sensitivity in the right ballpark for
mass range 10-100 GeV => many
constraints

- Still to probe: m<10 GeV, m>100 GeV

- Gamma-rays, cosmic rays, CMB, 21
cm, collider+lab searches, impact on
stellar evolution, gravitational searches.

* Axions

- Several ongoing experiments
(probe conversion of axions to
photons, absorption of photons)

- QCD axion: mass range (10ueV)
not reached yet.

- Axion-like particles (ALP, e.g.
ULA): ongoing studies,
astrophysical probes.

* Sterile neutrinos

- Excitement after the 3.5 keV line
(evidence disputed)

- Tiny room left in parameter space
from structure formation (Ly-alpha)
and X-ray constraints.



Sterile neutrino (W/C)DM

e.g. Dodelson & Widrow '94,
Shi & Fuller '99,

Asaka, Shaposhnikov, Boyarsky+ '06-16 Boyarsky+'19
(very conservative X-ray limits)

— Neutrino masses (see-saw)
— Leptogenesis S R e URR

— DM candidates (more or less warm) S\ e :
— keV mass range (!= thermal mass) ;

thermal overproduction

current X=ray
constraints

LD [$} vy + Mv,v, +hee [N 102 e

,,,,,,,,
-
........

= ——Lsin?(26,) My

5
M [keV]
Aspects relevant to cosmology:
* suppress power on small scales
— viable? (e.g. Schneider ‘16)
* current limits on thermal masses > 1-10 keV

Detection (main):

* neutrino experiments (double 3 decay)

* decays to X-ray line: hints @ 3.5 keV (Bulbul+14, Boyarsky+14)

— 7 keV consistent with thermal mass of 2 keV(e.g. Abazajian 14)

— hot debate, could be systematics (cf. Jeltema & Profumo)

— Hitomi excludes excess in Perseus cluster (1607.07420 see also 1608.01684)

Constraints: Resonant-production mechanism almost excluded —




Sterile neutrino (W/C)DM.: a strong case + technical case

A theoretically appealing scenario

- Neutrino masses + leptogenesis (independent from DM)

- Parameter space rather well defined in minimal scenarios => predictive: ~ 5-50 keV

- Warmish/Coldish DM candidate: suppression of power spectrum on small scales (no subhalos
expected)

- Next generation X-ray telescopes (e.g. Athena will tell) + small-scale probes (e.g. Ly-alpha, 21 cm)

Technicalities

- Fine-tuned (e.g. resonant production)

- Sterile neutrino DM not involved in leptogenesis (can be model dependent)

- Very technical (relic density calculation difficult)

- Non-minimal scenarios (e.g.embedded in GUTs, SUSY, etc.) cumbersome

- Complementarity between searches is model dependent (e.g. double-beta decay)



Sterile neutrinos in France (theory)
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(OCD) axions

Peccei-Quinn, Wilczek, Weinberg, Kim, Shifman, Vainshtein,
Zakharov, Dine, Fishler, Srednicki, Sikivie — 70'-80'

Peccei-Quinn (PQ) symmetry unbroken PQ symmetry broken The axion picks up a mass
Very high T @T~f ~10" GeV T~T,,~150 MeV

NB: QCD axion needs physics beyond standard model
Production mechanism (relevant to DM axions):

* Misalignment mechanism (generic)

* Decay of topological defects (if PQ broken after inflation)
— compact axion asteroids! (f~0.5) — Tkachev’86

* m << eV => large occupation # => classical field

* QCD axions = CDM => searches through EM couplings!

O n2oox 10t [ de

’ 1016 GeV

Axion cosmology
(review)

3y
) 2 m; [ = My Mg
Marsh’15 m —

“ (fa/Npw)? (m, +mgy)?




Constraints on QCD axions
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See reviews in
Marsh’15 + Irastorza & Redondo ‘19

=> QCD axions viable candidates
(very cold DM)




QOCD axions: strong theoretical case + rich pheno

An appealing scenario:
- Motivations independent from cosmology: the strong CP problem
[non-QCD axions motivated by string theory — less compelling for the moment]
- Pending theoretical uncertainties, well defined and small parameter space
- Light + electromagnetic interactions: can be probed from experiments “on the
table” + many astrophysical phenomena (e.g. stellar physics)
- Clustering properties (post-inflation scenarios)? A possible issue for haloscopes

Challenges:
- Very hard to detect in labs (amplification + magnetic fields)
[But historically very active collaborations between theorists and experimentalists]

Further motivations for light bosons or ALPs?

- Small-scale 1ssues in CDM [ULAs ... but start to be in trouble]

- Early dark energy [Hubble tension]

- A playground for theorists! e.g. self-gravitating boson stars, early universe, phase
transitions, etc.



Non-QCD ultra-light axions (ULA = fuzzy DM)

Hu+00, Peebles’00, Marsh+15, Hui+16, Schivet+14, Du+18, etc.

Same production mechanisms as axions but not meant to solve the strong CP (QCD) pb
=> P(QQ breaking + axion mass free parameters (cosmological constraints) => EM couplings optional

Main properties: . 72
* Suppression of small-scale perturbations

* incoherent interference pattern and granularity on scales ~ 1-100 kpc
* formation of solitonic cores at halo centers

* core/cusp solved in galaxies if m~1022 eV

V? + '?7'1-(1)) (%

2mR?

zL12.0 y
z=8.0 -«
- z2=22 p= ‘
z=09 5, Y
. 4

-- CDM
— m, =102 eV
z=0.0 (res x8) e , B
---2=0.0 F
Soliton callision :
o) CDM (z = 8.0) _ :
+ K- 9kpch =Y R 1
= N
A b s
-
% z=1.07
% 2.5 Mpc/h
Bozek+15 Schive+14 Veltmaat+18
Halo mass function Solitonic cores in Evolution of solitonic cores

Fuzzy DM simulations



DM axions in France (theory)
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Black holes as DM?
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Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Munoz, Yacine Ali-Haimoud, Marc arXiv:1603.00464 (PRL)

Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess'




Primordial black holes

Generic idea (Zel’dovich&Novikov, Hawking, Carr&Hawking’70’s):

* Very large density fluctuations may collapse directly into Bhs in the radiation era
& M, ~mass within horizon

* Fluctuation amplitude ~ 10> at CMB scales

* ~0.01 needed => more power (e.g. non gaussianity) needed on very small scales
* Production enhanced at phase transitions (e.g. QCD < Mh~1 M_ )

* A potentially macroscopic CDM candidate

Review in Carr+16

Courtesy
Anne Green

o(Mmu) (mass variance)
typical size of fluctuations

PBH forming
fluctuations

B(M) ~ / P(6(My))ddé(My) Gausstan 3 ( M ) — erfc (—
- Js. S T ' ‘ spectrum Co /
o (M) ~ 10 [ ~ 10° exp [—(10%)?] Mass fraction in PBHs strongly

suppressed in standard inflation.
=> Fine-tuned inflation models



Primordial black holes

* Most (past) constraints based on assuming peak mass function
* Huge effort to reconsider them (e.g. Green+, Kamionkowski+, Carr+, Garcia-Bellido+)

* Typically two windows: below and above microlensing constraints.
* If mass function extended enough, PBHs might be ~100% of DM
— if 1-100 Msun, might solve core/cusp

— GW with <1 Msun a specific signature

Calcino+18

ROS-2 (microlensing) revisited

-
8
-
U
G
—
L

= Standard Model
o=10.5

0.001 0010 0100 1 100
MM,

Byrnes+18 — impact of QCD PT
Extended mass function (logN) _8 —6 —4 —2

(also Choptuik; Niemeyer & Jedamzik; Musco+) 10 10 10 10
“.fM (o] M,"M [O]

Caveat:
potentially strong constraints from lensing of SNe [a for M > 1 M
pbh sun

— see Zumalacarregui & Seljak ‘17 (PBHs < 0.4 CDM)



Primordial black holes + WIMPs?

Boucenna+’18
(see also Eroshenko’16)

Mgu(g)

m X
100 GeV
1 TeV




Primordial black holes in France (theory)
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WIMPs + portal models + dark sectors

Simple production mechanism from thermal plasma
— chemical equilibrium reached or not

Annihilation / production
— Interaction strength constrained by relic abundance +
power spectrum

(freeze out/in)
— can be made more complex with dark sectors
— symmetric or asymmetric DM can be realized

** Non-thermal production also possible

X Elastic scattering

Searches based on the existence of DM/SM
interactions (except for gravitational searches)

— Colliders: rather model dependent (DM +
mediator masses do matter)

— Indirect: DM annihilation or decay
[Not sensitive to stable asymmetric DM]

— Extra-Indirect: e.g. stellar physics

[ecens, = g

— Direct: elastic/inelastic collisions in laboratory



Kinetic decoupling, free streaming scale, and small-scale structures

“eq

2= 10, GO 1= 10, WM 15 . . v (t) - - |
i Boscia )\fs — leq / dt—= ~ Ukd (a'kd /a‘eq) /Heq
L1

0

CDM WDM

Vogelsberger+16 — ETHOS

z =6 GOM 2= B, WD

ETHOS-1
ETHOS-2
; H N ETHOS-3
ETHOS-1 E [ [ ETHOT_'} -4 _{r_u ned)
ETHOS-2 | 0 Eyt

ETHOS-3

5 -1, CoM ’_- = F ’ ETHOS-4 (tuned)

10t
k [h Mpc™']
— ETHOS-1
— ETHOS-2
— ETHOS-3 I e
CDM candidates: minimal scale of
T structures depend on interactions.
o For TeV particle, can be ~10-1°M
S
§ SIDM: self-interactions set cores in
- massive objects (not in light objects).
Galactic|scale
10!

r [kpc]



Collider searches

New Physics around TeV?
Annihilation / production - No sign at _LHC so far

- Status of hierarchy problem?

Motivations?

_—— - Simple mechanism production in early universe
- Can be probed in current/future experiments

Effective/minimal approaches
- €.g. Minimal DM (Cirelli et al)
- Simplified models (portal models)

DM searches:
- mono-X
- Z/H width

Hidden Photon — mvisible (m4 > 2 m, )

. wh DM / mediators can be ...
e TN - Heavy (> TeV)
ETO favored ok X | - Light (< 10 GGV)
; aBar VLN ; .. difficult to look for at colliders
— extend searches to sub-GeV
(ete-, beam dump

-1b|

\"‘n Lan

N,

.t

Fermion Higgs Portal

Belle IT

Stamdard
Br{h=inv)

Arcadi+’18
Penning’18

B-Pllt‘ jil

\—-.

0.001 0.01 0.1

my [GeV] 50 100 500 1000

my[GeV]




Astro/ complementarity

Direct detection rate — WIMP-matter
scattering (— kinetic decoupling in early universe

Oy N FQ( E,) p s 3 + subhalo mass cutoff)
7 X — ([ J () ‘ J y

202 my S WIMP WIMP

2 U >VUmin

71 L
\Uscat ) Nplasma

Dark matter profile + phase space

=> constraints from cosmological abundance (+ cosmic-ray transport)

+ minimal scale for DM structures => constrained by Milky Way-mass model
(subhalos) (full gravitational potential DM +
baryons)

(— chemical decoupling in early universe)

WIMP . : A
Indirect detection rate (e.g. gaming rays)
— WIMP annihilation
dgs™ _ §lov) ANy [ o / o [P °
WIME, dE  Arm dE Jres. | Jl.o.s My

] _ aa\ e
ra.rm — \Oann f) ”‘x




Direct WIMP searches

Billard+ 13

XENON-1t results:
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Also sensitive at lower energy:
* electronic recoils (e.g. Essig+12)
* Bremsstralhung (e.g. Pradler & Kouvaris 17)




Direct WIMP searches

Billard+ 13

Motivations for Sub-GEV?

- Light mediators and dark
sectors can help achieve SIDM
scenarios

Difficulties:

- Scattering off electrons and
phonons + other effects (e.g.
Midgal) cumbersome

LUX ‘15

XENON-1t ‘18
Detector mass (>1t)
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e
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-
—

— Complementary with collider
searches + astro/cosmo

10 100

WIMP Mass [GeV/c?]

Motivations for multi-TeV
- Electroweak multiplets still possible (e.g. MDM)

Difficulties:
- Some non-perturbative effects, e.g. Sommerfeld
enhancement, bound states (Petraki+)



Up to the skies!

+b/x+ O(x™2)

relic density

Y & V'S

" Courtesy P. Salati

Requirements (and/or):
* clean signal

(spectral lines or features) Cosmic-ray transport
* large signal/noise ratio o
=> Control astrophysical
backgrounds

Pieri, JL+'11

1. 7@+ 00 4.4e+00 1.6e+01 5.9e+01

Big DM subhalos

* Dwarf Galaxies (~40) —
no other HE astrophysical
processes expected there.

Mertsch PHD thesis '10

* Closest/Largest expected
Diffuse gamma-ray emission annihilation rate

=> check spectral/spatial * Large theoretical uncertainties
properties wrt background (background not controlled)




Indirect DM searches: the realm of “fake news”?

* Diffuse gamma-ray “excess” (EGRET ~ 00’s)

* 511 keV line at Galactic center (Integral 05°s)

* Cosmic-ray positron “excess”’ (PAMELA+AMS 10’s)
* Gamma-ray “excess’” at Galactic center (Fermi 10’s)
* 3.5 keV line (Chandra + XMM 10’s)

* Cosmic-ray antiproton “excess”

* etc.




Indirect DM searches: the realm of “fake news”?

* Diffuse gamma-ray “excess” (EGRET ~ 00’s)

* 511 keV line at Galactic center (Integral 05°s)

* Cosmic-ray positron “excess”’ (PAMELA+AMS 10’s)
* Gamma-ray “excess’” at Galactic center (Fermi 10’s)
* 3.5 keV line (Chandra + XMM 10’s)

* Cosmic-ray antiproton “excess”

* etc.

* Mostly astrophysical phenomena
(much more difficult to predict)

=> Need very clean signatures!
+ controlling backgrounds
very important!



Some constraints (annihilating DM)

Pawlowski, Bullock, Boylan-Kolchin

Hayashi+ '16
Gamma-rays from Dwarf Satellite Galaxies (Fermi data)

Fermi-LAT 6yrs (Pass 8)

Beware:
Constraints on s-wave annihilation only
(model-dependent)

Planck @ ESA

Slatyer '16, Liu+’17
CMB (Planck data ‘15)
— energy injection delays recombination

107

108 10° 10" 10"
Dark Matter Mass m, [eV]

102




Down to MeV DM with cosmic rays + p-wave

{ Voyagerl —— PropagationA ~—— NFW
§ AMS-02 —— Propagation B

<av> =3x10"%cm?®s7!

¢r =830 MV

Hubble Sightlines Along the Voyager 1 & 2 Paths

m, =10MeV

Termination Shock ——»

Heliopause ——»

3 ¢ o -
‘; Locallihterstellar Cloud
‘s e rstellar Clou

Voyager 1

Voyager 2

0.1 et 10
Energy E [GeV]

Boudaud, L: Stref and Lavalle (2018)

*flﬂw’)

19 LIGHT HOURS 19 LIGHT YEARS

Voyager 1 has passed the heliopause in 2012!

=> cosmic rays no longer shielded by solar magnetic
fields

=> use MeV e+e- data on tape + AMS-02 beyond

=> Constraints on annihilating MeV dark matter as
stringent as those obtained with CMB. . NFW
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A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for
Annihilating Dark Matter

Ilias Cholis,’>* Tim Linden,?7 and Dan Hooper®*:*

(arXiv:1903.02549)

ISM Model |

* A strong claim based on a simple Delta chi2 argument
— Chi2/dof good for background

— Very large Delta chi2 when DM annihilation is added
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A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for
Annihilating Dark Matter

Ilias Cholis,’>* Tim Linden,?7 and Dan Hooper®*:*

(arXiv:1903.02549)

ISM Model |

Antiprotons from AMS-02 are consistent with a secondary astrophysical origin

Laurent Derome,3 Julien Lavalle, David Maurin,® Pierre Salati,®
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Perspectives in indirect searches

Improve:

- dark matter distribution in the MW: halo
shape + subhalos

- modeling of astrophysical background

- define clean ROI

Neutrinos:
- DM capture by Sun
- Nice complementarity with SD-DD
- Super-heavy DM

;"bf]:: M rTE‘ ‘h"-|

Gamma-rays: Einasto r.=1.5kpc
- The origin of the GC emission | re =150 pc —— re=2Kkpc
- Fermi still very useful (GeV)
- Go TeV! CTA , fo =500 pc ---- =5 kpc
- Go to MeV- complementary with CMB ' o =1kpe NLL cross section

Antimatter:

- Antiprotons currently discussed

- GAPS will probe anti-d

- Strong progress in theory of CR propagation
expected [AMSO02 has been game changing]

[Plots from Cirelli+’15 (Fermi on MDM) and

Rinchiuso+’19 (CTA on Wino DM)]. 3 4 527 [11_2\!] 20 30 40
DM




Neutrino telescopes

mm ceCube (2011-2014)
Super-K (1996-2012)
== Antares (2007-2012)
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Aarsten+’17 Albert+’17
(Icecube) (Antares)



WIMP-like DM in France (theory
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Gravitational searches for dark matter

Rationale:
- Distribution of DM in galaxies
— core/cusp + diversity problem
— density profiles in target systems (e.g. Milky Way + satellites)
- Probe of DM halo “granularity”
— Subhalos (a prediction of CDM — even with self-interactions)
— Compact objects (PBHs are back + ultra-compact subhalos)
- Reduce astrophysical uncertainties for predictions + identify best targets

Techniques:

- Precise astrometry + kinematical studies

- Gravitational lensing (compact objects + subhalos)
- Gravitational waves (only for PBHs)

+ indirect: e.g. Ly-alpha, etc.

@ IN2P3: LSST, 21 cm, VIRGO++, LISA



Gravitational searches for dark matter

Example: Astrometry with Gaia
(bottom-up: modeling a posteriori to make sense of data)

T

O’Hare+19: the dark shards

— Stellar structures in phase space

— If coming from merged subhalos => DM counterparts
— Leads to structure in f(v)

— Relevant to direct DM searches (WIMPs and axions)




Put all constraints together?

Numerical tools exist for some scenarios (e.g. WIMPs):

- Micromegas, Superlso, PPPC4DM, etc. (lots of international efforts, e.g. Gambit, etc.)

- They try to integrate as many constraints as possible: production mechanism,
colliders/direct/indirect

- Caveats: astro/cosmo uncertainties hard to fully integrate (see bayesian tools like Gambit)

Dedicated tools for specific searches:
- Annihilation spectra (e.g. PPPC spectra) still affected by uncertainties: sub-GeV / multi-TeV
- Eftc.

Further developments expected, but ... multiplication of scenarios makes it difficult to cover
everything



lake home message

Astro/cosmo 1:

- DM case very strong

- Based on GR applied to cosmology + standard particle/nuclear physics +
Gaussian assumption for primordial perturbations

- Even if DM i1s modified GR, it must effectively look/behave like CDM on
observed scales

Astro/Cosmo 2:
- Potentially some issues on small scales: SIDM/ULA or baryonic physics?

Astro/Cosmo 3:
- Still many uncertainties
— Primordial spectrum on small scales + Pre-BBN history not constrained
— Distribution of DM i1n halos: detailed shapes and subhalos
— Impact on model parameter space + input for astro searches

Model building:
- Only a few scenarios with independent motivations
- WIMP no longer the reference case: enlarge th/exp perspectives
- Maybe DM is not 100% made of particles

Search strategies:



Some theoretical guidelines

* Some challenges:
- Still some technical challenges for different candidates (e.g. ...)
- Mixed scenarios (what if DM is not made of a single species?)
- Assess theoretical uncertainties (astro/cosmo/particles)

* Reinforce collaborations between
- Experts in model building + technicalities
- Experts in early universe physics (production + early universe pheno: BBN, CMB, etc.)
- Experts in structure formation
- Experts in phenomenology: searches at colliders, direct/indirect searches, gravitational
searches, stellar physics, etc.

* Maintain strong links with experiments
- Is GdR SUSY — Terascale the appropriate format? (more collider oriented)
- DM is a wide and active scientific topic: time for a dedicated “GdR” in France?
— 1f so, must also involve INSU and INP
— Virtues: increase global understanding of progress in different fields

DM = an interdisciplinary field => important to find a place where to discuss everything together



Backup
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