Origin of Dark Matter: Theoretical review and complementarity of searches

Julien Lavalle LUPM – CNRS-IN2P3 – U. Montpellier (on behalf of a bunch of people from several IN2P3/INP/INSU labs)

Prospectives IN2P3 2020 – GT04 Neutrinos et Matière Noire

Bordeaux, 28 October 2019

Much less theoretical contribs submitted than actual effort!

Contribs from: IPNL and LAM+LAPTh+LPSC+LUPM+Obs.Stras. (IN2P3/INP/INSU)

The cold Dark Matter (CDM) paradigm

So far, only gravitational evidence for DM (cosmological structures+CMB)

CDM successes:

- CMB peaks
- Successful structure formation (from CMB perturbations)
- => CDM seeds galaxies, galaxies embedded in DM halos
- Lensing in clusters + rotation curves of galaxies
- Also consistent with Tully-Fisher relation (baryonic physics)

R (kpc)

R (kpc)

The cold Dark Matter (CDM) paradigm

Dark Matter on galactic scales

Bulk of luminous matter

Oh+11

* Keplerian decrease of rotation velocity not observed

* Stars and gas not bounded to the object unless invisible mass there

=> Spherical dark matter halo could explain this + natural stabilizer

CDM issues on small (subgalactic) scales

James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

CDM issues on small (subgalactic) scales

James S. Bullock¹ and Michael Boylan-Kolchin²

¹Department of Physics and Astronomy, University of California, Irvine, CA 92697, USA; email: bullock@uci.edu

²Department of Astronomy, The University of Texas at Austin, 2515 Speedway, Stop C1400, Austin, TX 78712, USA; email: mbk@astro.as.utexas.edu

Governato+12 Cusps→cores

Core/cusp+diversity problems or regularity vs. diversity problems. Maybe baryonic effects, but clear statistical answer needed. Does same feedback recipe solve all problems at once?

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For **DM produced non thermally** in the early universe: **particle statistics matters**!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use **dwarf galaxies as test systems**

Liouville's theorem for non-interacting fermions, assuming they were close to FD distribution in early universe

$$f_{\nu}(p,T) = \frac{g_{\nu}}{(2\pi)^3} \frac{1}{e^{E/T} + 1} \xrightarrow{\max} \frac{g_{\nu}}{2(2\pi)^3} \ge \frac{\rho(r)}{m_{\nu}} \times \left\{ f(p) = \frac{e^{-\frac{p^2}{2m_{\nu}^2 \sigma_v^2}}}{(2\pi m_{\nu}^2 \sigma_v^2)^{3/2}} \right\}$$

$$\rho(r) = \frac{9\,\sigma_v^2}{4\,\pi\,G\,\left(r+r_0\right)^2}$$

Cored-isothermal sphere

$$m_{\nu} \gtrsim \left\{ \frac{9\sqrt{2\pi} M_P^2}{g_{\nu} \sigma_v r_0^2} \right\}^{1/4} = 0.1 \,\text{keV} \,\left\{ \frac{r_0}{1 \,\text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \,\text{km/s}} \right\}^{-1/4}$$

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems

Pauli exclusion principle (no assumption on initial phase space): cannot exceed density of degenerate Fermi gas!

$$E_F = \left(\frac{\hbar^2}{2\,m}\right) \left(3\,\pi^2\,n\right)^{2/3} \longrightarrow v_{F,\nu} \equiv \sqrt{\frac{2\,E_{F,\nu}}{m_{\nu}}} = \left(3\,\pi^2\,\frac{\rho}{m_{\nu}^4}\right)^{1/3} \le v_{\rm esc}$$

$$m_{\nu} > \left\{ 3 \,\pi^2 \, \frac{\rho}{v_{\rm esc}^3} \right\}^{1/4} \approx 0.1 \, \text{keV} \, \left\{ \frac{r_0}{1 \, \text{kpc}} \right\}^{-1/2} \left\{ \frac{\sigma_v}{30 \, \text{km/s}} \right\}^{-1/4}$$

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems → Updated by Boyarsky+09: m> 0.5 keV

Bosons: de Broglie wavelength > size of system => $m > 10^{-22} eV$ \rightarrow see review in e.g. Marsh '15 (axion-like particles)

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems → Updated by Boyarsky+09: m> 0.5 keV

Bosons: de Broglie wavelength > size of system => $m > 10^{-22} \text{ eV}$ \rightarrow see review in e.g. Marsh '15 (axion-like particles)

> Lower mass bounds only! (except for unitarity constraints – thermal case) ↔ m < 100 TeV (see Griest & Kamionkowski '90)

\rightarrow Assume a single DM species:

* Massive

* Cold or close to cold (or cold-warm):

CMB peaks + Ly-alpha + structure formation + dwarf galaxy phase space

=> For **DM produced thermally** in the early universe: m > 1-5 keV (bosons or fermions)

=> For DM produced non thermally in the early universe: particle statistics matters!

Fermions: the Tremaine-Gunn limit ('78) => use dwarf galaxies as test systems → Updated by Boyarsky+09: m> 0.5 keV

Bosons: de Broglie wavelength > size of system => $m > 10^{-22} eV$ \rightarrow see review in e.g. Marsh '15 (axion-like particles)

* Interactions?

- → Electrically neutral (or charge << 1: milli-charged except in secluded dark sector)
- \rightarrow If thermally produced => (weak) couplings to SM particles
- \rightarrow No prejudice on asymmetry dark matter/antimatter
- → Self-interactions and/or annihilations allowed but SI cross sections bounded
- \rightarrow Possibility of entire dark sector(s)

$$2 {
m cm}^2/{
m g} \simeq 4 {
m b}/{
m GeV} \lesssim rac{\sigma_{
m self}}{m_{\chi}} \lesssim 0.4 {
m b}/{
m GeV}$$

Original proposal by Carlson+'92 To solve core-cusps (e.g. Spergel+'00, Calabrese+'16) Dynamics of clusters (Kaplinghat+'15)

(Self-interacting dark matter – SIDM)

Combine constraints on small/large scales => velocity-dependent cross section

Model building

Two main approaches

* **Top-down** "DM is a consequence"

* **Bottom-up** "DM is a requirement"

* Motivated by "defects" in SM

- Asymmetry matter-antimatter not achieved
- Strong CP pb
- Stability of the Higgs sector (hierarchy pb)
- Metastability of EW vacuum
- Flavor hierarchy
- Gauge unification
- Quantum gravity (strings)
- etc.

+++ may solve several issues + **DM candidates** - - - DM "solution" potentially embedded in large parameter space (tricky phenomenology)

* Motivation from Cosmology - scalar field cosmology (for the sake of itself) - non-minimal inflation (primordial black holes)

* Consistent QFT

+++ Production mechanism/s +++ DM phenomenology with a minimal set of parameters => predictive - - - built on purpose (ad hoc)

Model building

Two main approaches

The hierarchy pb (Higgs stability), aka the theoretical particle physics crisis

Higgs mass receives quantum corrections \rightarrow very sensitive to any new heavy scale (fine tuning)

- * Might be cured by adding canceling terms
- * e.g. **Supersymmetry** \Rightarrow bosons \leftrightarrow fermions cancel in loops
- * want to forbid new interactions, like:
- \rightarrow discrete symmetry (parity, Z2, etc.)
- => proton does not decay

=> lightest particle stable

STANDARD

STANDARD

DM: neutralino, sneutrino, gravitino, etc.

+QCD axion DM, "string-inspired" axions (eg ULA) +(Sterile) right-handed neutrino DM +Others (e.g. relaxions ...)

* Consistent OFT

+++ Production mechanism/s +++ DM phenomenology with a minimal set of parameters => predictive - - - built on purpose (ad hoc)

* Top-down "DM is a consequence"

* Bottom-up "DM is a requirement"

Status of current searches

* WIMPs (thermal DM) + "Portal models"

- Many ongoing experiments (multiwavelength, multimessenger + laboratory)

- Sensitivity in the right ballpark for mass range 10-100 GeV => many constraints

- Still to probe: m<10 GeV, m>100 GeV

- Gamma-rays, cosmic rays, CMB, 21 cm, collider+lab searches, impact on stellar evolution, gravitational searches.

* Axions

- Several ongoing experiments (probe conversion of axions to photons, absorption of photons)

- QCD axion: mass range (10µeV) not reached yet.

- Axion-like particles (ALP, e.g. ULA): ongoing studies, astrophysical probes.

* Sterile neutrinos

- Excitement after the 3.5 keV line (evidence disputed)

- Tiny room left in parameter space from structure formation (Ly-alpha) and X-ray constraints.

Sterile neutrino (W/C)DM

e.g. Dodelson & Widrow '94, Shi & Fuller '99, Asaka, Shaposhnikov, Boyarsky+ '06-16

- \rightarrow Neutrino masses (see-saw)
- \rightarrow Leptogenesis
- → DM candidates (more or less warm)
- \rightarrow keV mass range (!= thermal mass)

$$\mathcal{L} \supset \mu \left[\frac{\phi}{v}\right] \bar{\nu}_l \nu_r + M \nu_r \nu_r + \text{h.c.}$$

$$\xrightarrow{N} \overset{\theta_{\alpha}}{\otimes} \overset{\psi_{\alpha}}{\longrightarrow} \overset{\psi_{\alpha}}{\to} \overset{\psi_{\alpha}}{\to}$$

Aspects relevant to cosmology:

* suppress power on small scales \rightarrow viable? (e.g. Schneider '16)

* current limits on thermal masses > 1-10 keV

Detection (main):

- * neutrino experiments (double β decay)
- * decays to X-ray line: hints @ 3.5 keV (Bulbul+14, Boyarsky+14)
- \rightarrow 7 keV consistent with thermal mass of 2 keV(e.g. Abazajian 14)
- \rightarrow hot debate, could be systematics (cf. Jeltema & Profumo)
- \rightarrow Hitomi excludes excess in Perseus cluster (1607.07420 see also 1608.01684)

Constraints: Resonant-production mechanism almost excluded

Sterile neutrino (W/C)DM: a strong case + technical case

A theoretically appealing scenario

- Neutrino masses + leptogenesis (independent from DM)
- Parameter space rather well defined in minimal scenarios => predictive: \sim 5-50 keV
- Warmish/Coldish DM candidate: suppression of power spectrum on small scales (no subhalos expected)
- Next generation X-ray telescopes (e.g. Athena will tell) + small-scale probes (e.g. Ly-alpha, 21 cm)

Technicalities

- Fine-tuned (e.g. resonant production)
- Sterile neutrino DM not involved in leptogenesis (can be model dependent)
- Very technical (relic density calculation difficult)
- Non-minimal scenarios (e.g.embedded in GUTs, SUSY, etc.) cumbersome
- Complementarity between searches is model dependent (e.g. double-beta decay)

Sterile neutrinos in France (theory)

www.cartesfrance.fr

(QCD) axions

Peccei-Quinn, Wilczek, Weinberg, Kim, Shifman, Vainshtein, Zakharov, Dine, Fishler, Srednicki, Sikivie – 70'-80'

NB: QCD axion needs physics beyond standard model Production mechanism (relevant to DM axions):

- * Misalignment mechanism (generic)
- * Decay of topological defects (if PQ broken after inflation)
- \rightarrow compact axion asteroids! (f~0.5) Tkachev'86
- * m << eV => large occupation # => classical field
- * QCD axions = CDM => searches through EM couplings!

$$\Omega_a h^2 \sim 2 \times 10^4 \left(\frac{f_a}{10^{16} \text{ GeV}}\right)^{7/6} \langle \theta_{a,i}^2 \rangle$$

Axion cosmology (review) Marsh'15

$$m_a^2 = \frac{m_\pi^2 f_\pi^2}{(f_a/N_{\rm DW})^2} \frac{m_u m_d}{(m_u + m_d)^2}$$

Constraints on QCD axions

See reviews in Marsh'15 + Irastorza & Redondo '19

=> QCD axions viable candidates (very cold DM)

QCD axions: strong theoretical case + rich pheno

An appealing scenario:

- Motivations independent from cosmology: the strong CP problem [non-QCD axions motivated by string theory – less compelling for the moment]

- Pending theoretical uncertainties, well defined and small parameter space
- Light + electromagnetic interactions: can be probed from experiments "on the table" + many astrophysical phenomena (e.g. stellar physics)
 - Clustering properties (post-inflation scenarios)? A possible issue for haloscopes

Challenges:

Very hard to detect in labs (amplification + magnetic fields)
 [But historically very active collaborations between theorists and experimentalists]

Further motivations for light bosons or ALPs?

- Small-scale issues in CDM [ULAs ... but start to be in trouble]
- Early dark energy [Hubble tension]

- A playground for theorists! e.g. self-gravitating boson stars, early universe, phase transitions, etc.

Non-QCD ultra-light axions (ULA = fuzzy DM)

Hu+00, Peebles'00, Marsh+15, Hui+16, Schive+14, Du+18, etc.

Same production mechanisms as axions but not meant to solve the strong CP (QCD) pb => PQ breaking + axion mass free parameters (cosmological constraints) => EM couplings optional

10⁸

10⁷

10⁶

^{0 m}d / (1)⁵ 10⁴

 10^{3}

 10^{2}

10

10-1

Main properties:

- * Suppression of small-scale perturbations
- * incoherent interference pattern and granularity on scales ~ 1-100 kpc
- * formation of solitonic cores at halo centers
- * core/cusp solved in galaxies if m~10⁻²² eV

$$i\hbar\left(\dot{\psi} + \frac{3}{2}H\psi\right) = \left(-\frac{\hbar^2}{2mR^2}\nabla^2 + m\Phi\right)\psi$$
$$\nabla^2\Phi = 4\pi G m_a |\psi|^2$$

Bozek+15 Halo mass function Schive+14 Solitonic cores in Fuzzy DM simulations

10⁰

r (kpc)

= 8.0 = 2.2

z = 0.9

NFW

10¹

z = 0.0 (res x8) z = 0.0

Soliton collision

CDM (z = 8.0)

Veltmaat+18 Evolution of solitonic cores

DM axions in France (theory)

www.cartesfrance.fr

Black holes as DM?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹ ¹Department of Physics and Astronomy, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA

arXiv:1603.00464 (PRL)

LIGO+VIRGO '16

Primordial black holes

Generic idea (Zel'dovich&Novikov, Hawking, Carr&Hawking'70's):

* Very large density fluctuations may collapse directly into Bhs in the radiation era

- * M_{pbh} ~ mass within horizon
- * Fluctuation amplitude $\sim 10^{-5}$ at CMB scales
- $* \sim 0.01$ needed \Rightarrow more power (e.g. non gaussianity) needed on very small scales
- * Production enhanced at phase transitions (e.g. QCD \leftrightarrow Mh~1 M_{sun})
- * A potentially macroscopic CDM candidate

Primordial black holes

- * Most (past) constraints based on assuming peak mass function
- * Huge effort to reconsider them (e.g. Green+, Kamionkowski+, Carr+, Garcia-Bellido+)
- * Typically two windows: below and above microlensing constraints.
- * If mass function extended enough, PBHs might be ~100% of DM
- \rightarrow if 1-100 Msun, might solve core/cusp
- \rightarrow GW with < 1 Msun a specific signature

potentially strong constraints from lensing of SNe Ia for $M_{pbh} > 1 M_{sun}$ \rightarrow see Zumalacarregui & Seljak '17 (PBHs < 0.4 CDM)

Primordial black holes + WIMPs?

Boucenna+'18 (see also Eroshenko'16)

Primordial black holes in France (theory)

www.cartesfrance.fr

• C

WIMPs + portal models + dark sectors

Simple production mechanism from thermal plasma: → chemical equilibrium reached or not (freeze out/in)

 \rightarrow interaction strength constrained by relic abundance + power spectrum

 \rightarrow can be made more complex with dark sectors

 \rightarrow symmetric or asymmetric DM can be realized

** Non-thermal production also possible

Searches based on the existence of DM/SM interactions (except for gravitational searches)

 \rightarrow Colliders: rather model dependent (DM + mediator masses do matter)

→ Indirect: DM annihilation or decay [Not sensitive to stable asymmetric DM]

 \rightarrow Extra-Indirect: e.g. stellar physics

 \rightarrow Direct: elastic/inelastic collisions in laboratory

Kinetic decoupling, free streaming scale, and small-scale structures

Collider searches

New Physics around TeV? - No sign at LHC so far

- Status of hierarchy problem?

Motivations?

- Simple mechanism production in early universe
- Can be probed in current/future experiments

Effective/minimal approaches

- e.g. Minimal DM (Cirelli et al)
- Simplified models (portal models)

DM searches: - mono-X - Z/H width

DM / mediators can be ...
Heavy (> TeV)
Light (< 10 GeV)
... difficult to look for at colliders
→ extend searches to sub-GeV
(e+e-, beam dump

Reviews in e.g.: Arcadi+'18 Penning'18

Astro/particle complementarity

Direct WIMP searches

Billard+13

Also sensitive at lower energy: * electronic recoils (e.g. Essig+12) * Bremsstralhung (e.g. Pradler & Kouvaris 17)

Direct WIMP searches

Billard+13

Motivations for multi-TeV

- Electroweak multiplets still possible (e.g. MDM)

Difficulties:

- Some non-perturbative effects, e.g. Sommerfeld enhancement, bound states (Petraki+)

Motivations for Sub-GEV?

- Light mediators and dark sectors can help achieve SIDM scenarios

Difficulties:

- Scattering off electrons and phonons + other effects (e.g. Midgal) cumbersome

 \rightarrow Complementary with collider searches + astro/cosmo

Up to the skies!

in galaxies \widehat{a} $+b/x + \mathcal{O}(x^{-2})$ $\langle \sigma v \rangle \approx$ $ar{p},\,ar{D}\,\&\,e^+$ relic density $\& \nu$'s

Courtesy P. Salati

Requirements (and/or): * clean signal (spectral lines or features) * large signal/noise ratio => Control astrophysical backgrounds

Big DM subhalos * **Dwarf Galaxies** (~40) – no other HE astrophysical processes expected there.

Galactic Center

* Closest/Largest expected annihilation rate
* Large theoretical uncertainties (background not controlled)

Cosmic-ray transport

Diffuse gamma-ray emission => check spectral/spatial properties wrt background

Indirect DM searches: the realm of "fake news"?

* Diffuse gamma-ray "excess" (EGRET ~ 00's)
* 511 keV line at Galactic center (Integral 05's)
* Cosmic-ray positron "excess" (PAMELA+AMS 10's)
* Gamma-ray "excess" at Galactic center (Fermi 10's)
* 3.5 keV line (Chandra + XMM 10's)
* Cosmic-ray antiproton "excess"

* etc.

Indirect DM searches: the realm of "fake news"?

* Diffuse gamma-ray "excess" (EGRET ~ 00's)
* 511 keV line at Galactic center (Integral 05's)
* Cosmic-ray positron "excess" (PAMELA+AMS 10's)
* Gamma-ray "excess" at Galactic center (Fermi 10's)
* 3.5 keV line (Chandra + XMM 10's)
* Cosmic-ray antiproton "excess"

* etc.

* Mostly astrophysical phenomena (much more difficult to predict)

=> Need very clean signatures! + controlling backgrounds very important!

Some constraints (annihilating DM)

Pawlowski, Bullock, Boylan-Kolchin

Planck @ ESA

Hayashi+ '16 <u>Gamma-rays from D</u>warf Satellite Galaxies (Fermi data)

Beware: Constraints on s-wave annihilation only (model-dependent) Slatyer '16, Liu+'17 CMB (Planck data '15) → energy injection delays recombination

Down to MeV DM with cosmic rays + *p*-wave

A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for Annihilating Dark Matter

Ilias Cholis,^{1,*} Tim Linden,^{2,†} and Dan Hooper^{3,4,‡}

(arXiv:1903.02549)

* A strong claim based on a simple Delta chi2 argument → Chi2/dof good for background

 \rightarrow Very large Delta chi2 when DM annihilation is added

A Robust Excess in the Cosmic-Ray Antiproton Spectrum: Implications for Annihilating Dark Matter

Ilias Cholis,^{1,*} Tim Linden,^{2,†} and Dan Hooper^{3,4,‡}

(arXiv:1903.02549)

Perspectives in indirect searches

Improve:

- dark matter distribution in the MW: halo shape + subhalos

- modeling of astrophysical background
- define clean ROI

Neutrinos:

- DM capture by Sun
- Nice complementarity with SD-DD
- Super-heavy DM

Gamma-rays:

- The origin of the GC emission
- Fermi still very useful (GeV)
- Go TeV! CTA
- Go to MeV- complementary with CMB

Antimatter:

- Antiprotons currently discussed
- GAPS will probe anti-d
- Strong progress in theory of CR propagation expected [AMS02 has been game changing]

[Plots from Cirelli+'15 (Fermi on MDM) and Rinchiuso+'19 (CTA on Wino DM)].

Neutrino telescopes

Aarsten+'17 (Icecube) Albert+'17 (Antares)

WIMP-like DM in France (theory)

www.cartesfrance.fr

Gravitational searches for dark matter

Rationale:

- Distribution of DM in galaxies

 \rightarrow core/cusp + diversity problem

 \rightarrow density profiles in target systems (e.g. Milky Way + satellites)

- Probe of DM halo "granularity"

 \rightarrow Subhalos (a prediction of CDM – even with self-interactions)

 \rightarrow Compact objects (PBHs are back + ultra-compact subhalos)

- Reduce astrophysical uncertainties for predictions + identify best targets

Techniques:

- Precise astrometry + kinematical studies
- Gravitational lensing (compact objects + subhalos)
- Gravitational waves (only for PBHs)
- + indirect: e.g. Ly-alpha, etc.

@ IN2P3: LSST, 21 cm, VIRGO++, LISA

Gravitational searches for dark matter

O'Hare+19: the dark shards

- \rightarrow Stellar structures in phase space
- \rightarrow If coming from merged subhalos => DM counterparts
- \rightarrow Leads to structure in f(v)
- \rightarrow Relevant to direct DM searches (WIMPs and axions)

Put all constraints together?

Numerical tools exist for some scenarios (e.g. WIMPs):

- Micromegas, SuperIso, PPPC4DM, etc. (lots of international efforts, e.g. Gambit, etc.)
- They try to integrate as many constraints as possible: production mechanism, colliders/direct/indirect
- Caveats: astro/cosmo uncertainties hard to fully integrate (see bayesian tools like Gambit)

Dedicated tools for specific searches:

Annihilation spectra (e.g. PPPC spectra) still affected by uncertainties: sub-GeV / multi-TeV
Etc.

Further developments expected, but ... multiplication of scenarios makes it difficult to cover everything

Take home message

Astro/cosmo 1:

- DM case very strong

- Based on GR applied to cosmology + standard particle/nuclear physics + Gaussian assumption for primordial perturbations

- Even if DM is modified GR, it must effectively look/behave like CDM on observed scales

Astro/Cosmo 2:

- Potentially some issues on small scales: SIDM/ULA or baryonic physics?

Astro/Cosmo 3:

- Still many uncertainties
- \rightarrow Primordial spectrum on small scales + Pre-BBN history not constrained
- \rightarrow Distribution of DM in halos: detailed shapes and subhalos
- \rightarrow Impact on model parameter space + input for astro searches

Model building:

- Only a few scenarios with independent motivations
- WIMP no longer the reference case: enlarge th/exp perspectives
- Maybe DM is not 100% made of particles

Search strategies:

Complementarity!!!!!

Some theoretical guidelines

* Some challenges:

- Still some technical challenges for different candidates (e.g. ...)
- Mixed scenarios (what if DM is not made of a single species?)
- Assess theoretical uncertainties (astro/cosmo/particles)

* Reinforce collaborations between

- Experts in model building + technicalities
- Experts in early universe physics (production + early universe pheno: BBN, CMB, etc.)
- Experts in structure formation

- Experts in phenomenology: searches at colliders, direct/indirect searches, gravitational searches, stellar physics, etc.

* Maintain strong links with experiments

- Is GdR SUSY \rightarrow Terascale the appropriate format? (more collider oriented)
- DM is a wide and active scientific topic: time for a dedicated "GdR" in France?
- \rightarrow if so, must also involve INSU and INP
- \rightarrow Virtues: increase global understanding of progress in different fields

DM = an **interdisciplinary field** => important to find a place where to discuss everything together

