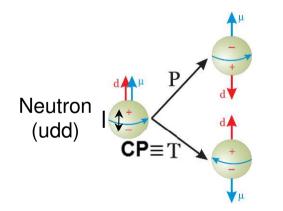
Searches for axion dark matter

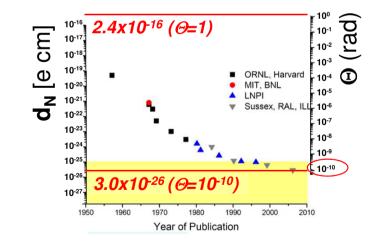
Fabrice Hubaut (hubaut@in2p3.fr)

CPPM/IN2P3 – Aix-Marseille Université (Marseille, FRANCE)

On Behalf of the following contributors:


https://indico.in2p3.fr/event/19776/contributions/75431/ (MADMAX - F. Hubaut *et al*) https://indico.in2p3.fr/event/19776/contributions/75425/ (GrAHal - T. Grenet *et al*) https://indico.in2p3.fr/event/19776/contributions/75434/ (BMV - C. Rizzo *et al*)

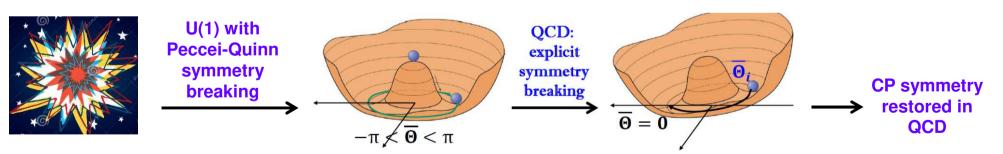
Thanks to all contributors for useful discussions


Prospectives IN2P3 - GT06, 28 october 2019

(Short) Theoretical motivations

- Studies of C,P, T symmetries in particle physics : major subject since >60 years
- CP violation in weak interaction: observed in 1964 in kaon system
 - ✓ Associated phase in quark-mixing CKM matrix measured $\rightarrow \delta_{13} \sim 1.2$ rad
 - ✓ Phase still to be measured in lepton sector (PMNS matrix) → T2K, DUNE, Super-ORCA, …
- CP violation in strong interaction ?
 - ✓ CP-violating term in QCD Lagrangian (controlled by Θ) is allowed and should exist
 - ✓ ... but Θ < **10**⁻¹⁰ from neutron electric dipole moment

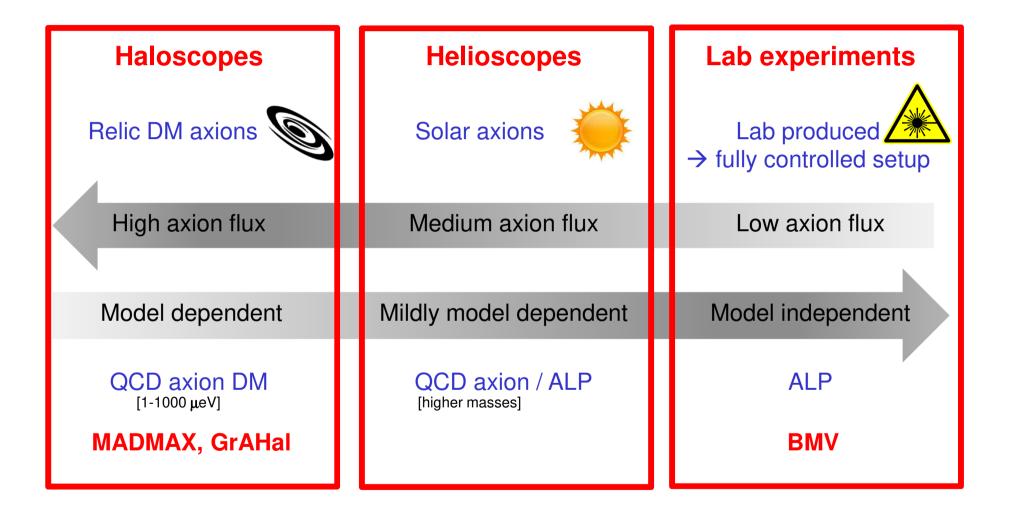
- Electric dipole moment: d_N = e·l
- If strong CP : $d_N \sim \Theta \times 10^{-16} e \cdot cm$
- Experimental results today:
 → d_N < 3x10⁻²⁶ e·cm → Θ < 10⁻¹⁰



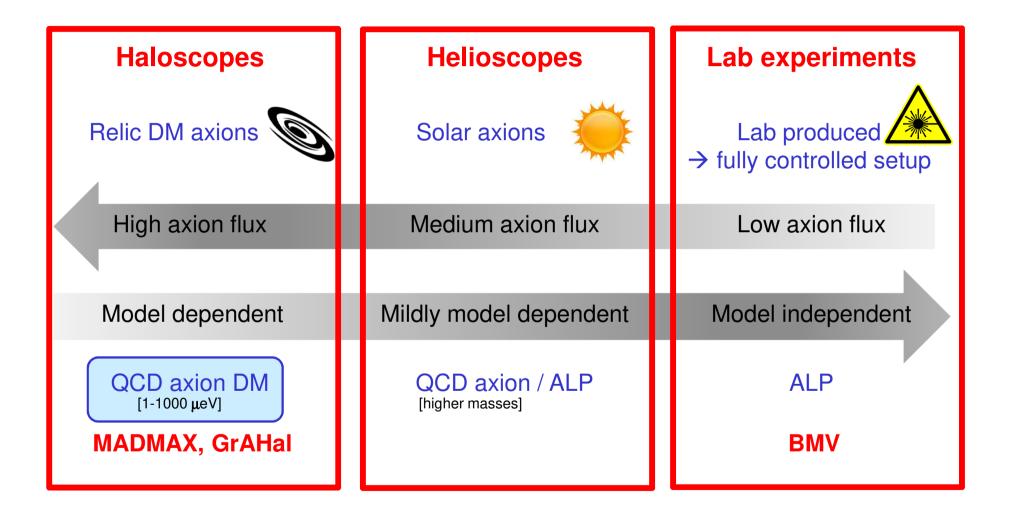
\rightarrow Strong CP Problem = naturalness problem. Why is Θ so small ?

(Short) Theoretical motivations

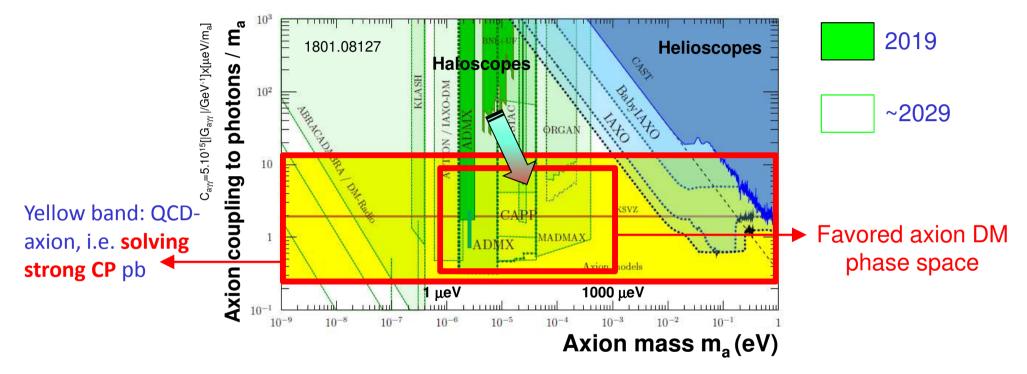
□ Solution to Strong CP problem → Axion = motivated by particle physics


- Mechanism: new global U(1) symmetry (Peccei-Quinn, 1977) spont. broken at scale f_a >> f_{EW}
 - → Makes Θ a dynamical field ($\Theta = a/f_a$), with a = pseudo-scalar boson
 - → Suppress CP-violating term in Lagrangian ($\Theta_{eff} \rightarrow \Theta a/f_a$) : explains absence of CP strong
- Consequence: Goldstone boson of the new theory = axion (Weinberg-Wilczek, 1978)
 - → Properties are all known given the scale of symmetry breaking f_a [mass $m_a \approx m_\pi f_\pi/f_a << eV$]
 - \rightarrow Couplings to SM particles suppressed by f_a : very weak interaction with SM
- Cosmology: Non-thermal axion production at T~f_a (can occur before or after inflation)

Axion = natural candidate for DM for $m_a=1-10^3 \mu eV$ (i.e. $f_a=10^{12}-10^9 GeV >> f_{EW}$)


Remark: ALP (Axion Like Particle) = scalar not solving strong CP problem but potential DM candidate

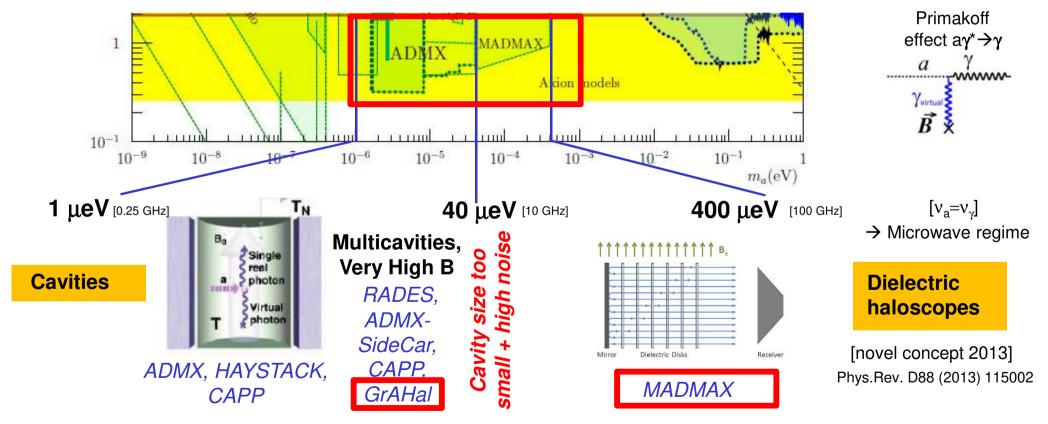
Axion/ALP searches


→ Complementarity between 3 mature experimental approaches

Axion/ALP searches

Axion DM search: status / prospects

Extremely challenging because of extraordinary weak coupling of axions [muucchh lower than neutrinos]

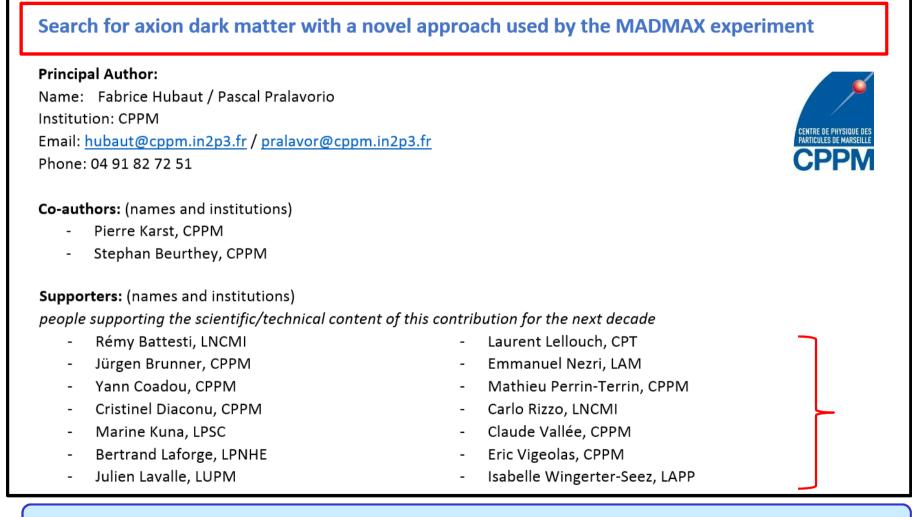


- Only 1 experiment (ADMX) currently probe a (very small) part of the favored phase space
- Vast R&D program to improve signal sensitivity and expand range of axion mass search

→ Next decade will be decisive, probing axion DM most favorable region

Axion DM search: how?

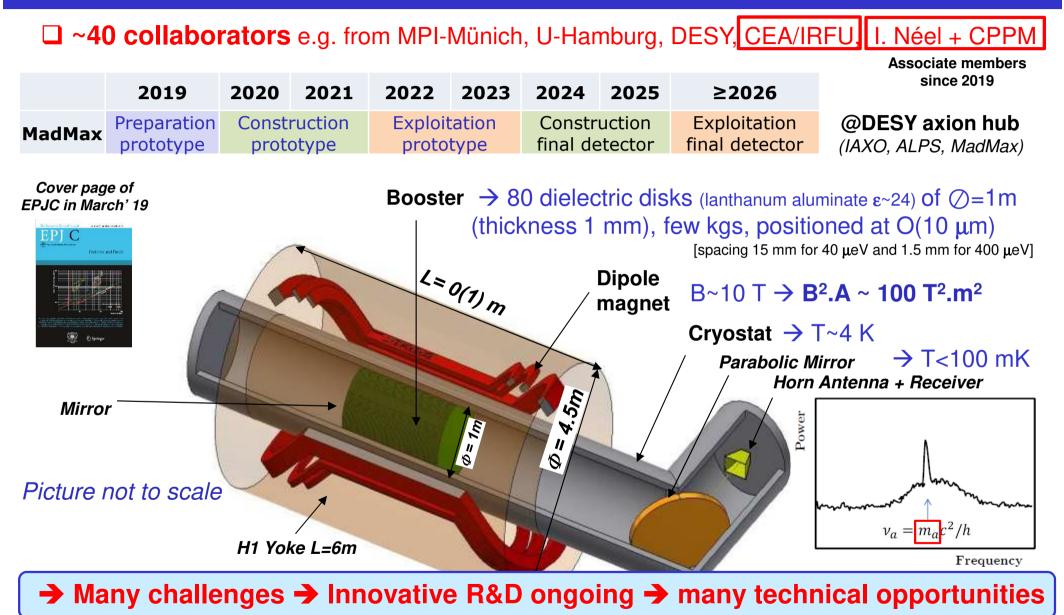
- Convert axions into photons [E field of $O(10^{-12}, \frac{B}{10T})$ V/m] \rightarrow high magnetic field >> 1T
- Boost photon field [up to P~10⁻²² W] → resonant cavities or emission at dielectric interfaces
- Scan over range of axion mass → need tunable set-up



New ideas of last decade coming to maturity to scan preferred mass range

MADMAX contribution

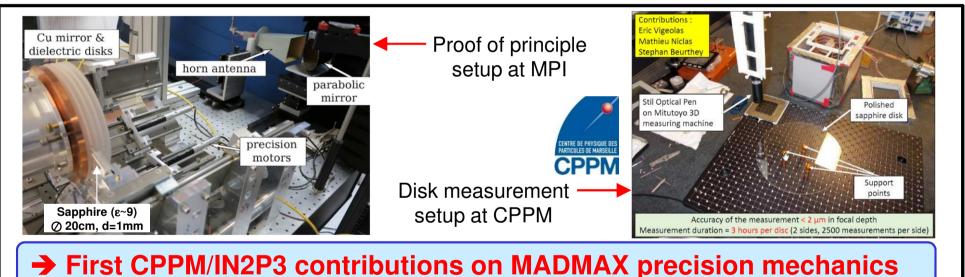
https://indico.in2p3.fr/event/19776/contributions/75431/


Only experiment capable to explore m_a **=40-400** μ **eV** (favored by post-inflation theory)

→ CPPM initiates experimental axion DM search at IN2P3

MADMAX experiment

White Paper [EPJC 79 (2019) 186, 1901.07401]


F. Hubaut (CPPM)

Searches for axion dark matter

MADMAX: Technical opportunities

Axion DM experiment at the technological frontier, e.g.

- 1. Need to control disk thickness (10 μ m) and position precisely disks (10 μ m)
- → Profit from the precision measurement infrastructure at CPPM [ATLAS pixels] to control disk planarity and thickness with 3 different set-ups with $O(\mu m)$ precision

> CPPM involvement in next years \rightarrow Prototype to validate technology

- Concentrate on booster, composed of **20** disks of **30 cm** diameter (1/4th of final detector)
- Operated at CERN (>2021) in ATLAS testbeam magnet [under CPPM impulsion → SPSC LoI]
- Can already probe unexplored region of phase space (ALPs) → physics in next 3-4 years

MADMAX: Technical opportunities

Axion DM experiment at the technological frontier, e.g.

- 1. Need to control disk thickness (10 μ m) and position precisely disks (10 μ m)
- 2. Need high magnetic fields over large apertures
- 3. Need ultra-low noise amplifiers (e.g. Josephson Parametric Amplifier) and cryogenic temperatures

- CEA-Saclay: full member of MADMAX collaboration [also involved in IAXO and Shuket projects]
- LNCMI-Grenoble: expert for MADMAX magnet review [P. Pugnat]
- Institut Néel Grenoble: associate member of MADMAX collaboration [N. Roch, L. Planat]

→ Synergies with GrAHal project

GrAHal contribution

https://indico.in2p3.fr/event/19776/contributions/75425/

GrAHal : un projet d'Haloscope à Grenoble pour détecter la Matière Noire axionique

Auteur principal :

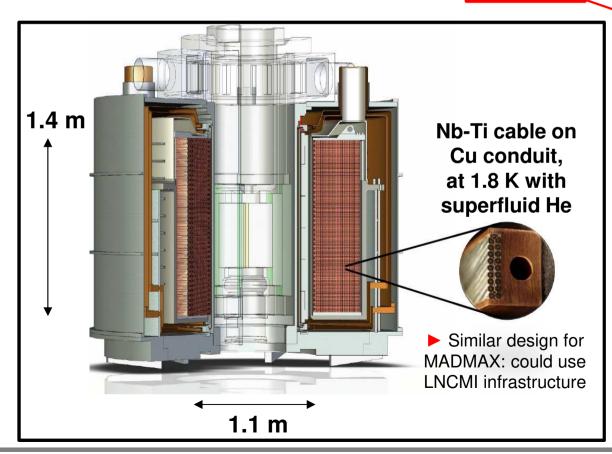
Thierry Grenet Institut Néel - CNRS - Grenoble Thierry.grenet@neel.cnrs.fr 04 76 88 74 61

Co-auteurs expérience :

Rafik Ballou (Institut Néel – Grenoble) Philipe Camus (Institut Néel – Grenoble) Pierre Pugnat (LNCMI – Grenoble) Nicolas Roch (Institut Néel – Grenoble) Stefen Krämer (LNCMI – Grenoble)

Co-auteurs théorie :

Christopher Smith (LPSC – Grenoble) Jérémie Quevillon (LPSC – Grenoble)



Project based on local synergetic expertises

GrAHal: hybrid magnet

□ High magnetic fields and fluxes

- Large bore superconducting solenoid in construction at LNCMI-Grenoble
- Possible hybrid configurations in association with resistive coils
- Modular magnet platform → B/②= 9T/800mm –17T/375mm 27T/170mm 43T/34mm

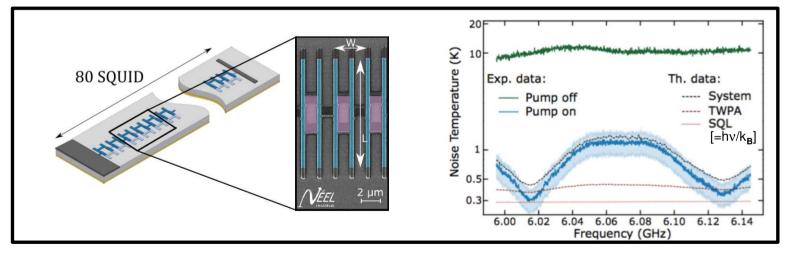
B²V~40 T²m³ [~8 for latest ADMX result]

LNCMI

$$P = g_{A\gamma\gamma}^{2}(\rho_{halo}/m_{A}) B^{2}V C Q/2$$

- Collaboration with CEA and Noell GmbH [as MADMAX magnet]
- Should be operational in 2021

GrAHal: low noise amplifiers


□ High magnetic fields and fluxes

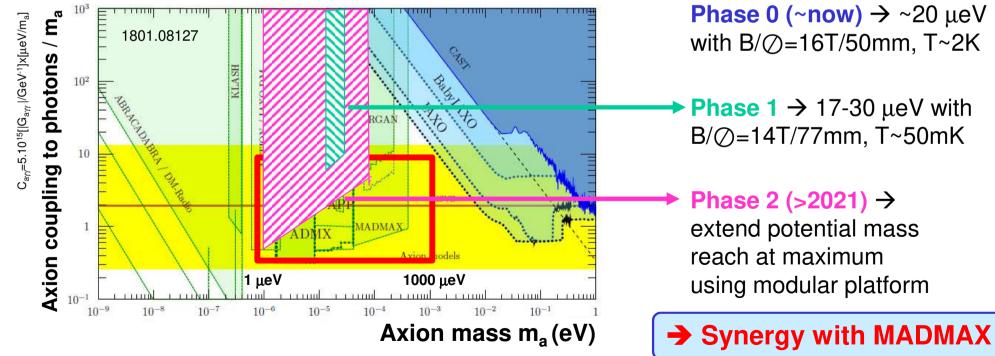
□ Ultra-low-noise microwave receivers

- Ultra-low noise microwave amplifiers based on Josephson jonctions (JPA) in development at Néel institute → microwave signal power readout
- Allows to work at quantum noise limit over a large bandwidth in >GHz regime

[i.e. better than High Electron Mobility Transistors HEMT and Superconducting Quantum Interference Device SQUID amplifiers]

Requires ultra-low temperatures (also for the RF cavities)

expertise at Néel institute with ³He/⁴He dilution refrigerators (<50 mK) [used e.g. for Edelweiss, Planck]</p>


GrAHal: physics goals

□ High magnetic fields and fluxes

Ultra-low-noise microwave receivers

□ Theoretical and analysis activities

+ discussions with people at CERN & IBS/CAPP (South Korea) for development of RF cavities

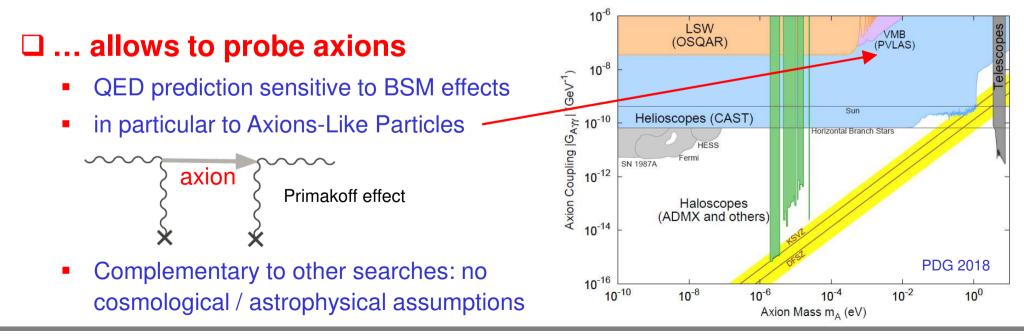
[First sensitivity estimates based on scaling wrt ADMX results using existing techno]

BMV contribution

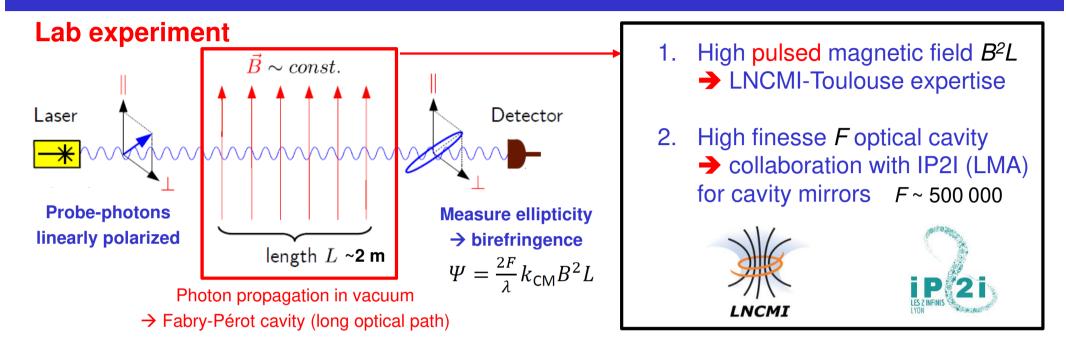
https://indico.in2p3.fr/event/19776/contributions/75434/

Vacuum Magnetic Birefringence: **QED & WISPS Principal Author:** Name: Carlo Rizzo Institution: Laboratoire National des Champs Magnétiques Intenses, UPR3228, CNRS/ INSA/UJF/UPS, 143 Avenue de Rangueil, 31400 Toulouse, France Email: carlo.rizzo@Incmi.cnrs.fr Phone: 0033 5 62 17 2981 **Co-authors:** (names and institutions) Rémy Battesti Laboratoire National des Champs Magnétiques Intenses, UPR3228, CNRS/ INSA/UJF/UPS, 143 Avenue de Rangueil, 31400 Toulouse, France. Supporters: (names and institutions) Jérôme Degallaix, Laurent Pinard Laboratoire des Matériaux Avancés Plateforme Nationale de l'IPNL-IN2P3. Bâtiment VIRGO 7. Avenue Pierre de Coubertin 69622 - Villeurbanne Cedex. Fabrice Hubaut, Pascal Pralavorio Centre de Physique des Particules de Marseille, Université Aix-Marseille, CPPM - Case 902, 163 Av de Luminy, 13288 Marseille Cedex 09.

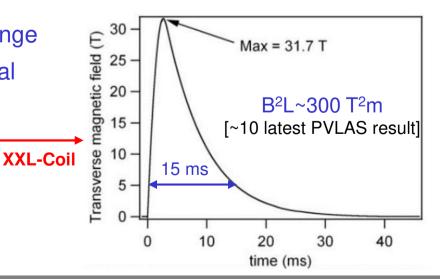
Axion search as by-product of very precise test of QED


BMV: physics goals

□ Vacuum magnetic birefringence...


- Macroscopic effect predicted by QED but never observed
- Vacuum refraction index depends on light polarization to external B field, because of quantum vacuum polarization
- Very precise test of QED through interaction of vacuum fluctuations and real γ

QED 1st order prediction: $\Delta n = n_{\parallel} - n_{\perp} \approx 4 \times 10^{-24} \frac{B_0^2}{T^2}$


Best current sensitivity at O(10) times QED prediction [PVLAS 1510.08052]

BMV: experiment & status

- Very small effect → enormous experimental challenge
- BMV world-class result in 2014 → validate technical choices [Eur. Phys. J. D 68, 16 (2014)]
- 2nd generation experiment under commissioning observation of VMB at reach (S/N~1)
- Next decade: precise measurement of VMB effect
 increased sensitivity to dark matter ALPs

Conclusions and prospects

□ Axion = DM candidate motivated by particle physics since 40 years ...

Very low mass wrt WIMPs (factor ~10⁻¹⁵)

□ ... can be discovered / excluded in the next O(10) years ...

- Sensitivity entered last year in the theory-favored region
- Will now be extended to most of the interesting range with novel experiments
- Initiate this field at IN2P3 in complement with direct searches for WIMPs

... with strong associated technical opportunities for IN2P3 (at low cost)

- Needs for precise instrumentation in extreme conditions (high B, cryo temperature, vacuum)
- Recognised expertise in other CNRS labs (LNCMI, Institut Néel) and CEA/IRFU → synergies
- Many innovative opportunities for technical departments

 Iots of room for IN2P3 visibility

Opportunities for IN2P3 in next decade (scientific & technical) on a fundamental question of particle physics with a strong discovery potential