Unitarity?

CNRS/IN2P3 Prospect (France) October 2019

Anatael Cabrera

CNRS/IN2P3 LAL/FLUO @ Orsay LNCA @ Chooz

High Precision Neutrino Unitarity Possible?

CNRS/IN2P3 2020 Prospect on Neutrino Physics

T. J. C. Bezerra⁵, M. Bongrand³, A. Cabrera^{*3,4}, E. Chauveau¹, M. Grassi³, P. Loaiza³, L. Manzanillas³, C. Marquet¹, M. Obolensky⁰, M. S. Pravikoff¹, L. Simard³, B. Viaud⁵, C. Volpe⁰, and F. Yermia⁵

⁰APC, CNRS/IN2P3, CEA/IRFU, Observatoire de Paris, Sorbonne Paris Cité University, 75205 Paris Cedex 13, France
 ¹CENBG, UMR5797, Université de Bordeaux, CNRS/IN2P3, F-33170, Gradignan, France
 ²CPPM, Aix Marseille University, CNRS/IN2P3, Marseille, France
 ³LAL, Univ. Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, Orsay, France
 ⁴LNCA Underground Laboratory, CNRS/IN2P3 - CEA, Chooz, France
 ⁵SUBATECH, CNRS/IN2P3, Université de Nantes, IMT-Atlantique, 44307 Nantes, France

tight collaboration with H. Nunokawa (PUC Rio, Brasil)

our contribution & team...

PMNS matrix...

mixing needed for neutrino oscillations

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

9 complex terms $\rightarrow \theta_{12}, \theta_{23}, \theta_{13}, \delta_{CP}$ parameters [assumed unitarity 3x3]

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \Longrightarrow \begin{pmatrix} c_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta} & s_{23}c_{13} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta} & c_{23}c_{13} \end{pmatrix}$$

SM : no prediction on PMNS matrix (all to be measured) Anatael Cabrera (CNRS-IN2P3 @ LAL - LNCA)

3

status on neutrino oscillation knowledge...

Standard Model(3 families)

[leptons & quarks]
&
PMNS_{3×3}(
$$\theta_{12}, \theta_{23}, \theta_{13}$$
)
&
± Δm^2 & + δm^2

no conclusive sign of any extension so far!!

(inconsistencies vs uncertainties)

must measure all parameters→characterise & test (i.e. over-constrain) Standard Model

	today			≥2030		
	best knowledge		NuFIT4.0	foreseen	dominant	technique
θ_{12}	3.0 %	sno	2.3 %	<1.0%	JUNO	reactor
θ23	5.0 %	NOvA	2.0 %	≲1.0%	DUNE⊕HK	beam (octant)
θιз	1.8 %	DYB	I.5 %	1.5 %	DC⊕ <u>DYB</u> ⊕RENO	reactor
+δm²	2.5 %	KamLAND	2.3 %	≲1.0%	JUNO	reactor
∆m²	3.0 %	T2K & DYB	1.3 %	≲1.0%	JUNO⊕DUNE⊕HK	reactor⊕beam
sign(∆m²)	unknown	SK	NO @ ~3 σ	@5 σ	JUNO⊕DUNE⊕HK	reactor⊕beam
СРУ	unknown	T2K	3/2 π @ ~2 σ	@5σ?	DUNE⊕HK⊕ALL	beam driven
			(Nov 2018)			(reactor-beam)

JUNO \oplus DUNE \oplus HK will lead precision in the field (\rightarrow CPV) except θ_{13} !

NOTE: ORCA \oplus PINGU \oplus IceCube complementary (Mass Ordering & Δ m² measurements)

all done?

by 2030, all @ ~1% level...

consider matrix structure (not just composition)

why shape?

maximal mixing — but θ13 small?
largest CP-Violation (SM)
symmetry behind?

[next slides]

since no CPV (yet) ⇒ test PMNS Unitarity via "each row"

$$U_{l1}|^{2} + |U_{l2}|^{2} + |U_{l3}|^{2} = 1$$

 $|U_{e1}|^2 + |U_{e2}|^2 + |U_{e3}|^2 = 1 \Rightarrow$ explore "electron top-row"

only " θ_{12} " and " θ_{13} "

elegant CKM vs PMNS extravaganza...

СКМ

$J_{max} \approx 3 \times 10^{-5}$

- →small CPV allowed
- →small CPV measured

almost diagonal

- →pattern exist (i.e. minimal mixing)
- →off-diagonal is small

unitarity precision "top-row" 0.5‰

→ **deviation tiny?** (follow pattern)

$\begin{array}{c|c} \mathbf{v}_{e} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\mu} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{\tau} \\ \mathbf{v}_{1} \\ \mathbf{v}_{2} \\ \mathbf{v}_{3} \end{array}$

PMNS

$J_{max} \approx 3 \times 10^{-2}$

- →larger CPV allowed [**10**³× **the CKM**]
- \rightarrow maximal CPV [T2K \oplus reactors- θ I3]

highly non-diagonal

- →less clear pattern (any?) (anarchy vs symmetry)
- \rightarrow only U_{e3} or θ_{13} is small!! (meaningful vs caprice)

unitarity precision "top-row"

→ large deviations? (consistent)

much CPV to explain the observed Universe→ PMNS only hope? [link to heavy Majorana neutrinos CPV?]

PMNS triangle (including CPV).

J(PMNS)≈3.33±0.06x10⁻²

J(CKM)≈3.18±0.15x10⁻⁵

PMNS

CKM

why Unitarity is important?

• as critical as θ_{12} , θ_{23} , θ_{13} , $\delta_{CP} \leftrightarrow part of their definition$

•so far **assumed!!→must demonstrate** [à la CKM]

• the last discovery within "neutrino oscillation"? • δ_{CP}

- ≠0 <u>interesting</u>, but foreseen in model
- •=0 <u>more</u>? [→symmetry?] <u>interesting</u>, but foreseen in model
- •=**x** [whatever value?] <u>very important</u> but **no prediction**!
- • UU^{\dagger} :
 - •≠| **breakthrough→** NO model**→BSM discovery!!**

•=| OK [confirm & over-constrain SM] [perfect prediction protected by symmetry]

Unitarity Violation→ 4th family? (kinematics) and/or NSI?

the electron-raw unitarity ingredients...

•sensitive to $\theta_{12} \rightarrow \delta < 1.0\%$ [unitarity] [JUNO, SNO, KL]

•sensitive to $\theta \mid 3 \rightarrow \delta \approx 1.5\%$ [unitarity] [JUNO, DUNE, reactor- $\theta \mid 3$]

•flux $\rightarrow \delta \gtrsim 3.0\%$ (6.0%) [''v'' \lor s ''non- \lor reference'']

11

Hervé de Kerret et al (arXiv:1901.094451)

status in θ | 3...

Submissions

nature physics

ARTICLE

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

reactor flux knowledge...

Submissions

nature physics

ARTICLE

First Double Chooz θ_{13} Measurement via Total Neutron Capture Detection

13

today's top-row unitarity knowledge...

improve Unitarity? [under study]

16

towards **Super Chooz**...

physics: <u>Unitarity</u>, proton-decay, supernovae, solar? $[\theta_{13} \oplus |\Delta m^2_{ee}|, etc]$

new detector?

new laboratory?

LiquidO technology

Release @CERN: https://indico.cern.ch/event/823865 Publication: arXiv:1908.02859

up to 50,000 m³

18

LNCA laboratory (Chooz)

Near Hall <L>≈410m ~30v day-1 ton-1 ~120 mwe

Chooz N4 Reactors ~8.4 GW^{thermal} \Rightarrow ~10²¹V/s

edf

Far Hall <L>≈1050m ~6v day-1 ton-1 ~300 mwe

new site here (built)

leptonic sector unitarity with LiquidO?

Conference @ HEP-European Physics Society (July 2019 @ Ghent Belgium) Web: https://indico.cern.ch/event/577856/contributions/3421609/

Unitarity must be addressed... (experimentally)

full results soon!

merci...

danke...

ありがとう...

고맙습니다...

obrigado...

Спасибо...

grazie...

谢谢...

hvala...

...شکرا

gracias...

thanks...

[paper in preparation]

anatael@in2p3.fr