

Neutrino Physics in Europe (atmospheric & accelerator)

KM3NeT

KM3NeT Collaboration: ARCA & ORCA

KM3NeT: ARCA & ORCA ARCA → TeV-PeV neutrino astronomy ORCA → neutrino mass ordering with few-GeV atmospheric neutrinos

Peritorial waters -2450m

ORCA: Oscillation Research with Cosmics in the Abyss

ARCA: Astroparticle Research with Cosmics in the Abyss

ARCA & ORCA detectors

Detector construction status ORCA

- Main cable repair in October 2018
- Three successful deployments in 2019
- 9 months continued data taking with 1 DU
- 4 months continued data taking with 4 DUs
- One more deployment planned in Nov 2019 (+2 DUs)
- Double number of DUs planned in 2020

4

Real data – atmospheric muon

• Example: down-going atmospheric muon passing close to DU

the large scattering length in deep-sea water

Real data – neutrino candidates

• Example: up-going neutrino candidate

Real data – selected neutrino sample

Real data – neutrino candidate with 4 DUs

- July 2019, seen on all 4 DUs
- estimated energy 30-40 GeV

Determining the NMH with atmospheric $oldsymbol{v}$'s

Relative difference in event numbers between normal and inverted hierarchy (N_{IH}-N_{NH})/N_{NH}

Sensitivity for Neutrino mass ordering

Sensitivity to distinguish between normal and inverted hierarchy:

~3 σ in 3 years (median sensitivity)

Measurement of Δm_{32}^2 and $\sin^2 \theta_{23}$

Competitive measurements of Δm_{32}^2 (2-3%) and $sin^2\theta_{23}$ (4-10%) Interesting results already with few lines after 1 year

Unitarity check : τ appearance

Early physics result 3k tau events/year (full detector) Rate constrained to 10% in one year (full detector)

7 Detection Units!

Long baseline ideas in Europe

- After shutdown of LBNO some years of reflection
- Two projects emerged

European Spallation Source

ESS schedule

Having access to a powerful proton beam...

What can we do with:

- 5 MW power
- 2 GeV energy
- 14 Hz repetition rate
- 10¹⁵ protons/pulse
- >2.7x10²³
 protons/year

conventional neutrino (super) beam

ESSvSB v energy distribution

(Nucl. Phys. B 885 (2014) 127)

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

Far detector @ 400-500km 2nd oscillation maximum

MEMPHYS like Cherenkov detector (MEgaton Mass PHYSics studied by LAGUNA)

- 500 kt fiducial volume (~2xHyperK, 1/16 ORCA)
- Readout: ~240k 8" PMTs
- 30% optical coverage

(arXiv: hep-ex/0607026)

$\nu_{\rm e}$ in the far detector

Below v_{τ} production, almost only QE events, not suffering too much by π^0 background.

M. Dracos, IPHC-IN2P3/CNRS/UNISTRA

2nd Oscillation max. coverage

Physics Performance

10

8

6

0

 \aleph^2

- little dependence on mass hierarchy, ۲
- δ_{CP} coverage at 5 σ C.L. up to **60%**, •
- δ_{CP} accuracy down to **6**° at 0° and 180° • (absence of CPV for these two values),
- not yet optimized facility,
- **5/10%** systematic errors on signal/background.

Protvino to ORCA – key numbers

- Baseline 2590 km
- First oscillation maximum 5.1 GeV
- Matter resonance
- Beam inclination

11.7°

Protvino accelerator complex

Accelerator	Length, m	Energy
Linear accelerator Ural-30	25.3	30 MeV
Linear accelerator I-100	79.4	100 MeV
Synchrotron U-1.5	99.16	1.32 GeV
Synchrotron U-70	1483.7	50-70 GeV

Operated by NRC «Kurchatov Institute» – Institute for High Energy Physics (IHEP), Protvino

Possible Beam Layout

Possible Beam layout

• Depth profile of beam and various underground halls

Neutrino Flux

- Very clean beam in leading flavour
- 1% (3%) (anti-)neutrino contamination
- Sub-percent v_e contamination

Phased approach – Phase 1

- ORCA : 1 building block
 - 115 detection units, performance as in Lol
- Accelerator : moderate intensity upgrade
 - Neutrino beam line to ORCA
 - 2 10¹³ protons per pulse
 - New ion injection scheme (H⁻) : x3
 - Double cycling frequency : 9s \rightarrow 4.5s : x2
 - 8 months per year operation
 - 8 10¹⁹ protons on target per year
 - Intensity : 90kW cost : 100 MEuro

Event numbers – Neutrino Beam

2.4 10²⁰ p.o.t (3years @ 90kW)

Normal Hierarchy (θ_{23} =45°)

Events $v_e 2000 - 2700$ $v_\mu 7000 \pm 20$ $v_\tau 1340 \pm 15$ NC 1960

Event numbers – Neutrino Beam

2.4 10²⁰ p.o.t. (3years @ 90kW)

Inverted Hierarchy (θ_{23} =45°)

Events $\nu_{e} 550 - 800$ $\nu_{\mu} 7000 \pm 40$ $\nu_{\tau} 1420 \pm 10$ NC 1960

NMH determination

• ORCA detector, 3 year with 90kW neutrino beam

Phased approach – Phase II

- Densified ORCA (~5x more photocathode area)
 - Example : 10x denser but half as big
 - Particle ID via Cherenkov ring fuzziness becomes possible
 - Particle ID improves as shorter muon tracks can be seen
 - More low energy events as detection threshold decreases
 - Better energy resolution
- Accelerator : 450 kW
 - 4 10²⁰ protons on target per year
 - 10¹⁴ protons per pulse
 - Repetition cycle 5 sec
 - 8 months per year operation
- Needs replacement of injector system

Decree from Russian President

УКАЗ президента российской федерации

О мерах по развитию синхротронных и нейтронных исследований и исследовательской инфраструктуры в Российской Федерации

- Issued 25/07/2019
- Reactor PIC at S.Petersburg
 - commissioning
- Synchrotron source at Novosibirsk
 - construction
- Synchrotron source at Kurchatov Institute, Moscow
 - upgrade
- Neutron spallation source at IHEP, Protvino
 - Prototype & 1.5GeV booster
- Synchrotron source at Far East
 - R&D

CP measurement – precision

- 450 kW, 3 / 10 years, 10x denser ORCA but 2x smaller
- High precision measurement possible

Tagged Neutrino Beam Experiment (ANR Mathieu Perrin-Terrin CPPM)

<u>Standard</u> Long Base Line (LBL) Experiment

<u>Tagged</u> LBL, the Next Generation of Experiment?

How to make a Neutrino Tagger (ANR Mathieu Perrin-Terrin CPPM)

Conclusion

backup

Real data - Muon Depth Dependence

Above a multiplicity of 8 PMTs, rate is dominated by atmospheric muons

Coincidences between PMTs on a DOM allow time, efficiency and transit time spread calibration

Muon depth dependence (multiplicity >8) Efficiency corrected

Photon detection in (Super) ORCA

- 150 (muon), 130 (e/m), 70 (hadron) PMTs hit per GeV
- 90 (muon), 80 (e/m), 50 (hadron) Optical modules hit per GeV

Super ORCA performance

- Exploit fuzziness of Cherenkov rings
- Even at 1 GeV leading lepton ring well visible

How to make ORCA 10x denser ?

- One example :
- Vertical spacing $9m \rightarrow 3m$
- New LOM design ?
- Different structure ?

How to make ORCA 10x denser ?

- Horizontal spacing 23m → 13m
- Deployment security
- Drag lines with ROV
- More complex structure than vertical lines ?
- OM curtain ?

The OMEGA project proposal

- New high intensity linac and booster synchrotron (3.5 GeV)
- 1.1 MW proton beam
- High-intensity spallation
 neutron source
- 450 kW power at 70 GeV using existing U-70 synchrotron
- A long baseline neutrino beam

Construction estimate 8 yr

N.E. Tyurin et al, Facility for intense hadron beams (letter of intent), News and Problems of Fundamental Physics 2 (9), 2010, http://exwww.ihep.su/ihep/journal/IHEP-2-2010.pdf

Cost estimates

Table extracted from the OMEGA project Lol

Nº	Object	Cost (million rubles)	M€ (approx)	
1	Linac LU-400	7 200	180	
2	RC PS U-3.5	10 1 00	250	
3	Neutrino channel	1 500	40	
4	Near Neutrino Detector	1 000	25	
5	Neutron source (target station T1)	8 400	210	
6	Neutron research set-ups	1 500	40	
7	Injection from U-3.5 to U-70	800	20	
8	Target stations T2 and T3	800	20	
9	Infrastructure	700	17	
10	Total	32 000	800	

Using 2013 exchange rate 40:1

Measurement precision

- 1% energy resolution and negligible systematic energy shape uncertainty due to tagging
- Ultimate precision for large CP violation

ORCA1: True neutrino energy

• Detection threshold: ~few GeV

Indirect Dark Matter detection

Gravitationally trapped relic WIMPs (Sun) annihilate and resulting products are measured.

Supernova detection

~10 MeV supernova neutrinos cannot be resolved individually Detection of Galactic supernovae by enhanced coincidence rates

At >= 6 coincidences per DOM, SN signal exceeds background.

Neutrino energy can be resolved Time resolution allows sensitivity to SASI SNEWs and real-time alerts

Super ORCA performance

- Flat acceptance down to ~1 GeV
- Particle ID better than 95% down to 1 GeV

Systematic Uncertainties

• P2SO

prior
1 ± 0.05
N_{μ}
1 ± 0.10
1 ± 0.05
$(8.51 \pm 0.15)^{\circ}$
$(45.0 \pm 2.0)^{\circ}$
2.5 ± 0.05
1 ± 0.10
1 ± 0.03
1 ± 0.03
1 ± 0.03

Which baseline?

~60% δ_{CP} coverage at 5 σ C.L.

- >75% δ_{CP} coverage at 3 σ C.L.
- systematic errors: 5%/10% (signal/backg.) Daegu, 30/08/2019 M. Dracos, IPHC=N2P3/CNRS/UNISTRA

51

Candidate active mines

$sin^2 2\vartheta = 0.1; \vartheta_{23} = \pi/4; 10$ years of running

<u>CPV performance comparison between ESSnuSB, DUNE and Hyper-K</u> <u>assuming 3% systematic errors for ESSnuSB in line with the other two.</u>

Fraction of δ_{CP}

2 active mines aligned...

My personal opinion: these scenarios are too optimistic for all facilities

Systematic errors

	SB		BB			NF			
Systematics	Opt.	Def.	Cons.	Opt.	Def.	Cons.	Opt.	Def.	Cons.
Fiducial volume ND	0.2%	0.5%	1%	0.2%	0.5%	1%	0.2%	0.5%	1%
Fiducial volume FD	1%	2.5%	5%	1%	2.5%	5%	1%	2.5%	5%
(incl. near-far extrap.)									
Flux error signal ν	5%	7.5%	10%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background ν	10%	15%	20%	correlated			correlated		
Flux error signal $\bar{\nu}$	10%	15%	20%	1%	2%	2.5%	0.1%	0.5%	1%
Flux error background $\bar{\nu}$	20%	30%	40%	correlated		correlated			
Background uncertainty	5%	7.5%	10%	5%	7.5%	10%	10%	15%	20%
Cross secs \times eff. QE [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. RES [†]	10%	15%	20%	10%	15%	20%	10%	15%	20%
Cross secs \times eff. DIS [†]	5%	7.5%	10%	5%	7.5%	10%	5%	7.5%	10%
Effec. ratio $\nu_e/\nu_\mu \ QE^{\star}$	3.5%	11%	—	3.5%	11%	—	—	—	—
Effec. ratio ν_e/ν_μ RES [*]	2.7%	5.4%	—	2.7%	5.4%	_	—	_	_
Effec. ratio ν_e/ν_μ DIS [*]	2.5%	5.1%	—	2.5%	5.1%	—	—	_	—
Matter density	1%	2%	5%	1%	2%	5%	1%	2%	5%

Comparisons

Comparison using the same systematic errors

Phys. Rev. D 87 (2013) 3, 033004 [arXiv:1209.5973 [hep-ph]]

Proton Accelerator Complex Protvino

Presentation S. Ivanov (IHEP) on 22/11/2012 @ CERN