Prospectives nationales 2020-2030 How to achieve a complete description of nuclear fission?

L. Audouin¹, G. Bélier², L. Bonneau³, O. Bouland⁴, A. Chatillon², O. Dorvaux⁵, N. Dubray², C. Ducoin⁶, J. Dudouet⁶, D. Durand⁷, M. Estienne⁸, M. Fallot⁸, L. Giot⁸, <u>B. Jurado³</u>, G. Kessedjian⁹, D. Lacroix¹, B. Laurent², X. Ledoux¹⁰, A. Lemasson¹⁰, P. Marini³, L. Mathieu³, O. Méplan⁹, P. Morfouace², N. Pillet², M. Ramdhane⁹, D. Ramos¹⁰, M. Rejmund¹⁰, C. Sage⁹, C. Schmitt⁵, O. Serot⁴, L. Stuttgé⁵, I. Tsekhanovich³, J. Taieb², J. Wilson¹

(1) IJCLab, (2) CEA-Arpajon, (3) CENBG, (4) CEA-Cadarache, (5) IPHC, (6) IP2I Lyon,
(7) LPC Caen, (8) Subatech, (9) LPSC Grenoble, (10) GANIL

The fission process

- Before scission, deformed nuclei in contact
- **Fragments recover smaller deformation** E* release by prompt neutron emission
- E* release by prompt gamma-ray emission

2

The importance of fission

Huge amount of energy released per fission event: ~ 200 MeV! Few eV for combustion of a molecule of coal, gas or oil...

•Nuclear technology: production of electricity, of radio-isotopes for medecine, of RIBs

•Nuclear astrophysics, synthesis of elements via the r-process in neutron-star mergers

Fission sets the end point of the r-process and strongly influences the rprocess abundances and light curves!

See talk by F. Hammache

The importance of fission for fundamental nuclear physics

Fission is a complete laboratory for studying nuclei at extreme deformation under the influence of shell effects, correlations and dynamics!

The richness of fission observables

Experimental projects

From the ground state to the fission barrier

From the fission barrier to scission and de-excitation of fragments

Direct kinematics

Spontaneous fission

Fragments A, E_k, prompt neutrons and gammas \rightarrow IPNO@Nu-ball2-PARIS-ALTO, ²⁵²Cf, ²⁴⁸Cm Multiplicity and angular distribution of prompt neutrons \rightarrow IPHC with DEMON and IC CODIS, ²⁵²Cf

Neutron-induced fission

Fragment E_k, isomeric ratios \rightarrow LPSC@LOHENGRIN-ILL, En thermal Energy spectrum and multiplicities of prompt neutrons \rightarrow CEA-DAM@LANSCE, ^{240,241,242}Pu Fragments A, E_k and prompt-neutrons \rightarrow FALSTAFF@NFS Fragments A, E_k prompt neutrons and gammas \rightarrow IPNO@Nu-ball2-PARIS-Licorne-ALTO, ²³⁸U

Fusion-fission

Fragments E_k , prompt neutrons and gammas \rightarrow IPHC@PARIS-ALTO, ¹²C + ²⁰⁴Pb, ⁴⁰Ca + ¹⁴⁴Sm (quasi-fission)

Different fissioning nuclei under different conditions and more and more observables will be simultaneously measured!

From the fission barrier to scission and de-excitation of fragments

Inverse kinematics

SOFIA@GSI/FAIR, CEA-DAM, IJCLab, CENBG, Coulomb excitation

VAMOS@GANIL, transfer-induced fission, fusion

Drift Drift Chamber Si x 21 Magnetic dipole and Chamber quadrupoles Ionization SeD Chamber RN VAMOS 12C SPIDER ²³⁸U (6.1 A MeV) +Be, C, Al. 238U EXOGAM

•Z and A of two fragments

Prompt gammas and neutrons with PARIS Coupling with the GRIT detector to improve the detection of the target –like residues ²³²Th beam and neutron-deficient nuclei around Pb

•Discrimination between fusion-fission and quasifission

Access to short-lived nuclei, A and Z of fragments with high resolution and neutrons & gammas!

Study of region of neutron deficient nuclei around Pb
Feasibility of (p,2p) reaction
Z and A and neutron multiplicity of two fragments with NeuLAND
Access to unexplored region of neutron-rich Th, Ac
Development of a ²⁴²Pu beam **Theoretical projects**

Modeling of the full fission process

Microscopic models: quantum-mechanical framework with mean-field approximation

-Time-Dependent Generator-Coordinate
Method(TDGCM)→CEA-DAM (N. Dubray, N. Pillet et al.) Quantum fluctuations but no dissipation
-Time-Dependent Hartree-FockBogoliuvov(TDHFB)→ IJCLab (D. Lacroix et al.)
Dissipation but no quantum fluctuations
Include dissipation in TDGCM
Provide codes to be used by the community

•Combine TDGCM and TDHFB

Stochastic models: classical dynamics

Langevin equation, Brownian shape-motion model→IPHC (C. Schmitt et al.)
Microscopic calculation of inertia and dissipation coefficients
Apply to fusion-fission and extend to quasi-fission

Semi-empirical model

General Fission Model (GEF)→ K.H. Schmidt, B. Jurado, C. Schmitt, M. Estienne, M. Fallot •Improve the model by using new available data

•Microscopic interpretation of observed regularities and parameter values

Modeling of specific parts of the fission process

From ground-state to the barrier: Fission cross sections and probabilties

R-matrix + statistical model \rightarrow

CEA-Cadarache (O. Bouland et al.)

•Include more degrees of freedom in the description of the fission barrier

•Calculate the single-particle and collective states on top of the barriers with **self consistent mean-field with pairing + collective model** \rightarrow CENBG (L. Bonneau et al.)

•Compare with new data on neutron cross sections and decay probabilities.

Precise modeling of the de-excitation of fission fragments

FIFRELIN→CEA-Cadarache (O. Serot et al.)

Improve the model for the properties of the fission fragments before de-excitation
Use a microscopic description of level densities and gamma-ray strength functions
Compare with new data on prompt neutrons and gammas and iisomeric ratios

All the 5 types of models are mutually enriching and require high-quality experimental data for comparison and improvement!

Conclusions

•Fission is an <u>important</u>, very complex process and there is <u>no complete</u> <u>understanding</u> yet!

•France is <u>world leader</u> in the investigation of fission!

France has fully <u>competitive and unique experimental</u> facilities to study fission!
French groups foresee future experiments to investigate more fissioning nuclei under <u>different conditions</u> and to measure <u>more and more observables simultaneously</u> with increasing <u>precision</u>

•All types of models, from microscopic to semi-empirical, will be further developed profiting from synergies between them and the new high-quality experimental data

Needed technical developments

-Storage ring set-up at GSI/FAIR -PARIS -Second arm at VAMOS -PARIS@ VAMOS -GRIT@VAMOS

Synergies

GT2:

-Theory (talks by M. Grasso, M. Bender)
-Nuclear structure (talk by G. Duchene)
-Super-heavy nuclei (talk by A. Lopez Martens)
-Nucleosynthesis (talk by F. Hammache)
-Future facilities (talk by P. Delahaye)
GT 11: Nuclear energy
GT7: Instrumentation, targets
GT6: Neutrino physics