Introduction 000	Direct Reactions	Shell evolution	n-n interactions	Conclusion

High-resolution spectroscopy of exotic nuclei through direct reactions

A. Matta for the direct reactions community

Nuclear Physics and Nuclear Astrophysics Town Hall Meeting, Abbaye aux Dames, Caen, 30-31th January 2020

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
● 00	0000	000000000	0000	000
What is n	ualaar ahua	:?		

What is nuclear physics?

N neutrons + Z protons

- predict all eigen states
- predict any obervable: E, J^{π} , g,...
- \rightarrow Getting the underlying W.F. right

Nuclei A + Nuclei B at Energy E

- predict all final states
- predict C.S. for each one
- $\rightarrow\,$ Getting the underlying W.F. right

Introduction ○●○	Direct Reactions	Shell evolution	n-n interactions	Conclusion
A dauntin	g task?			

Solving the "too many / not enough" body problem with an unknown interaction

Current model doing OK:

- \rightarrow Predict trends
- $\rightarrow\,$ Need to tune per region
- $\rightarrow\,$ Fail at predicting details

"You know what I mean" by Rafa Jenn

Introduction ○●○	Direct Reactions	Shell evolution	n-n interactions	Conclusion
A dauntin	g task?			

Solving the "too many / not enough" body problem with an unknown interaction

Current model doing OK:

- \rightarrow Predict trends
- $\rightarrow\,$ Need to tune per region
- $\rightarrow\,$ Fail at predicting details

Hang on people!

- First 70% of a task in 30% of time
- 39 years from Nucleus to S.M.

 \rightarrow All done in 2041

"You know what I mean" by Rafa Jenn

Introduction ○○●	Direct Reactions	Shell evolution	n-n interactions 0000	Conclusion 000		
Using directe reactions						
	Any reaction	n that occure in a si	ngle-step			

Introduction	Direct Reactions	Shell evolution	n-n interactions 0000	Conclusion	
Using directe reactions					

Any reaction that occure (mostly) in a single-step

price to pay \Rightarrow small cross section

a bunch of people Direct F

Direct Reactions

a bunch of people Direct Reactions

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Extracting	structure	information	from transfe	r
DWBA Forma	lism A(a,b)B			
	$d\sigma \mu_{\alpha}\mu_{\beta} k_{\beta}$	3 1	$\mathbf{\nabla}$ $ \mathbf{T} ^2$	

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{\kappa_{\beta}}{k_{\alpha}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{M_{\alpha}M_{\beta}} |T_{\alpha\beta}|$$

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f}|\Psi_{i}\rangle \cdot \langle \phi_{b}|V_{na}|\phi_{a}\rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}})d\vec{r}_{Aa}d\vec{r}_{Bb}$$

Transition Matrix element

000		00000000000000000000000000000000000000	n-n interact	tions	000
Extracting	structure in	nformation	from t	transfer	
DWBA Formali	sm A(a,b)B				

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{M_{\alpha}M_{\beta}} |T_{\alpha\beta}|^2$$

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f}|\Psi_{i}\rangle \cdot \langle \phi_{b}|V_{na}|\phi_{a}\rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}})d\vec{r}_{Aa}d\vec{r}_{Bb}$$

Optical Potential describing elastic scattering

- Assume elastic scattering is dominant
- Imaginary part summed all other process
- Valid only at "small" CM angle
- Non-unicity of the solution
- $\rightarrow\,$ Need for large data set in the region
- $\rightarrow\,$ cf M. Grasso for theory driven one

Introduction	Direct Reactions ●○○○	Shell evolution	n-n interactions	Conclusion
Extracting	structure	information	from trans	sfer
DWBA Forma	lism A(a,b)B			
	$\frac{d\sigma}{d\sigma} = \frac{\mu_{\alpha}\mu_{\beta}}{k_{\beta}} \frac{k_{\beta}}{k_{\beta}}$	3 1	$\sum T_{\alpha\beta} ^2$	

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_{a}+1)(2J_{A}+1)} \sum_{M_{\alpha}M_{\beta}} |\mathcal{T}_{\alpha\beta}|^2$$

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f} | \Psi_{i} \rangle \cdot \langle \phi_{b} | V_{\mathsf{na}} | \phi_{a} \rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}}) d\vec{r}_{Aa} d\vec{r}_{Bb}$$

ab-initio calculation or phenomenologic prescription

Introduction	Direct Reactions ●○○○	Shell evolution	n-n interactions	Conclusion
Extracting	structure	information	from transf	fer
DWBA Forma	lism A(a,b)B			
	$\frac{d\sigma}{d\sigma} = \frac{\mu_{\alpha}\mu_{\beta}}{k_{\beta}} \frac{k_{\beta}}{k_{\beta}}$	3 1	$\sum T_{\alpha\beta} ^2$	

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{M_{\alpha}M_{\beta}} |T_{\alpha\beta}|^2$$

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f} | \Psi_{i} \rangle \cdot \langle \phi_{b} | V_{na} | \phi_{a} \rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}}) d\vec{r}_{Aa} d\vec{r}_{Bb}$$

Structure Input : nuclear overlap function

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Extracting	structure	information	from trans	fer
DWBA Forma	lism A(a,b)B			
	$d\sigma \mu_{\alpha}\mu_{\beta} k$	ß 1	$\sum \tau ^2$	

$$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2J_a+1)(2J_A+1)} \sum_{M_{\alpha}M_{\beta}} |\mathcal{T}_{\alpha\beta}|^2$$

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f} | \Psi_{i} \rangle \cdot \langle \phi_{b} | V_{na} | \phi_{a} \rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}}) d\vec{r}_{Aa} d\vec{r}_{Bb}$$

Structure Input : nuclear overlap function

Spectroscopic factor:

$$S = \int r^2 \langle \Psi_f | \Psi_i \rangle^2 d\vec{r} \approx \int r^2 |\phi_n|^2 d\vec{r}$$

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Extracting	structure ir	nformation f	rom transfer	
DWBA Forma	lism A(a,b)B			
	$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}} \frac{1}{(2$	$\frac{1}{2J_a+1)(2J_A+1)}$ N	$\sum_{\alpha \in M_{\alpha}} T_{\alpha\beta} ^2$	

$T_{\alpha\beta} = \int \chi_{\beta}^*(\vec{r_{Bb}}, \vec{k_b}) \langle \Psi_f | \Psi_i \rangle \cdot \langle \phi_b | V_{na} | \phi_a \rangle \chi_{\alpha}(\vec{r_{Aa}}, \vec{k_a}) d\vec{r}_{Aa} d\vec{r}_{Bb}$

Structure Input : nuclear overlap function

Spectroscopic factor:

$$S = \int r^2 \langle \Psi_f | \Psi_i \rangle^2 d\vec{r} \approx \int r^2 |\phi_n|^2 d\vec{r}$$

Overlap injected directly:

- Correct shape :
 - \rightarrow correct overlap (Δ L)
 - ightarrow correct potentials (Real)
- Correct amplitude:
 - \rightarrow correct overlap (Binding)
 - \rightarrow correct potentials (Imaginary)

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Extracting	; structure ii	nformation	from transfer	•
DWBA Forma	lism A(a,b)B			
	$\frac{d\sigma}{d\Omega} = \frac{\mu_{\alpha}\mu_{\beta}}{(2\pi\hbar^2)^2} \frac{k_{\beta}}{k_{\alpha}}$	$\frac{1}{(2J_a+1)(2J_A+1)}$	$\sum_{M_{\alpha}M_{\beta}} T_{\alpha\beta} ^2$	

$$T_{\alpha\beta} = \int \chi_{\beta}^{*}(\vec{r_{Bb}},\vec{k_{b}}) \langle \Psi_{f} | \Psi_{i} \rangle \cdot \langle \phi_{b} | V_{na} | \phi_{a} \rangle \chi_{\alpha}(\vec{r_{Aa}},\vec{k_{a}}) d\vec{r}_{Aa} d\vec{r}_{Bb}$$

Structure Input : nuclear overlap function

Spectroscopic factor:

$$S = \int r^2 \langle \Psi_f | \Psi_i \rangle^2 d\vec{r} \approx \int r^2 |\phi_n|^2 d\vec{r}$$

 \rightarrow typical ${\sim}20\%$ incertitude on S (d,^3He) vs (e,e'p)

Overlap injected directly:

- Correct shape :
 - \rightarrow correct overlap (Δ L)
 - ightarrow correct potentials (Real)
- Correct amplitude:
 - \rightarrow correct overlap (Binding)
 - \rightarrow correct potentials (Imaginary)

Introduction	Direct Reactions ○●○○	Shell evolution	n-n interactions	Conclusion
Extracting	structure	information	from Coulex	
Cline's criteria				
Large imp	pact parameter $ ightarrow$	Small scattering an	gle $ ightarrow$ "Safe" Coulex	

Introduction	Direct Reactions ○●○○	Shell evolution	n-n interactions	Conclusion
Extracting	structure ir	nformation f	from Coulex	
Cline's criteria				
Large imp	pact parameter $ ightarrow$ S	Small scattering ang	gle $ ightarrow$ "Safe" Coulex	:
Low energy Co	oulex formalism			
	$\frac{d\sigma_{if}}{d\Omega} = \frac{d\sigma_{ru}}{d\Omega}$	$\frac{th}{r}P_{if} \to P_{if} = (\sum_{n} a)$	$(n)^{2}$	

Introduction	Direct Reactions 000●	Shell evolution	n-n intera	ctions	Conclusion
Extracting	structure	information	from	Knock-	out
Knock-out for	malism for N ^A (T,X)N ^{A-1}			
	Core + nucl	eon $n \Rightarrow \Psi_i\rangle = \Psi_f\rangle$	$\langle \rangle \otimes \phi_n\rangle$		
	$\sigma_{sp} =$	$\sigma_{absorbtion}+\sigma_{diffracti}$	on		

Introduction	Direct Reactions 000●	Shell evolution	n-n intera	actions	Conclusion
Extracting	g structure	information	from	Knock-	-out
Knock-out for	rmalism for N ^A ($T,X)N^{A-1}$			
	Core + nucle	eon $n \Rightarrow \Psi_i\rangle = \Psi_f\rangle$	$ \phi_n angle$		
	$\sigma_{sp}=0$	$\sigma_{absorbtion} + \sigma_{diffraction}$	on		
Glau	ber formalism	<i>5</i>	$ c ^2 \rightarrow co$	ore survived	
$\sigma_{absorbtion} =$	$\int b S_C ^2(1- S_n ^2)$)db 1 – .	$ S_n ^2 \rightarrow n$	ucleon is goi	ne
		Ei	konal ap	proximation	
$C(\vec{l})$ ion	$\begin{bmatrix} 0 & (\vec{b} - \vec{r}) \\ 0 & (\vec{r}) \\ d^2 \vec{r} \end{bmatrix}$	$d^2\vec{r}$	-	+	
$S_C(b) = e^{iS_{NN}}$	P Core (~ ·)P Target (')— · _	$\sigma_{NN}(\rho)$	$)pprox\sigma_{NN}$	

Introduction	Direct Reactions	Shell evolution	n-n intera	actions	Conclusion
Extracting	structure	information	from	Knock-	out
Knock-out form	malism for N ^A (T,X)N ^{A-1}			
	Core + nucle	eon $n \Rightarrow \Psi_i\rangle = \Psi_f\rangle$	$\langle \rangle \otimes \phi_n\rangle$		
	$\sigma_{sp}=0$	$\sigma_{absorbtion} + \sigma_{diffracti}$	on		
Glaub	er formalism	5	$ c_C ^2 ightarrow co$	ore survived	
$\sigma_{absorbtion} = \int$	$\int b S_C ^2(1- S_n ^2)$)db 1 – -	$ S_n ^2 ightarrow n$	ucleon is gon	e
		Ei	ikonal ap	proximation	
$S_c(\vec{b}) = e^{i\sigma_{NN}\int \vec{b}}$	$)d^{2}ec{r}_{\perp}$	-	+		
		$\sigma_{NN}(ho)pprox\sigma_{NN}$			
$ ho_{Core} pprox ho_{tot} - \phi_n ^2$					

-

000		000000000	0000	actions	000
Extractin	g structure	information	from	Knock-c	out
Knock-out fo	ormalism for N ^A ((T,X)N ^{A-1}			
	Core + nucl	eon $n \Rightarrow \Psi_i\rangle = \Psi_f\rangle$	$\langle \rangle \otimes \phi_n\rangle$		
	$\sigma_{sp} =$	$\sigma_{absorbtion} + \sigma_{diffraction}$	on		
Glai	uber formalism	5	$ c ^2 \rightarrow cc$	ore survived	
$\sigma_{absorbtion} =$	$\int b S_C ^2(1- S_n ^2)$?)db 1- -	$ S_n ^2 \rightarrow n$	ucleon is gone	
		Ei	konal ap	proximation	
$S_{c}(\vec{b}) = e^{i\sigma_{NN}}$	$\int \rho_{Core}(\vec{b}-\vec{r})\rho_{Target}(\vec{r})$	$d^{2}\vec{r}_{\perp}$	-	+	
			$\sigma_{NN}(\rho)$	$)pprox\sigma_{NN}$	
$ ho_{Core} pprox ho_{tot} - \phi_n ^2$					
	(Be,X) vs (e,e'p) \Rightarrow typical ~20% incertitude on S				
_	a bunch	of people Direct Reactions	_		

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	00000000	0000	000

Shell evolution

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	00000000	0000	000
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution ○●O○○○○○○	n-n interactions	Conclusion
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Breaking t	the shell			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Breaking t	the shell			

a bunch of people

a bunch of people Direct Reactions

a bunch of people Direct Reactions

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Shell evolu	ution around	⁷⁸ Ni		

⁷⁸Ni identity card

- ✓ Doubly magic: N=50, Z=28, yet not a good core
- ✓ Low $2_1^+ \implies np-nh \implies Gap$? Valence Space? Interaction?
- ✓ Hints $0^+_2 2^+_2 \implies$ Spherical/Prolate

Recent result from RIKEN: a Japanese-French collaboration

R. Taniuchi et al, Nature 569, 53-58 (2019)

Introduction 000	0000	Shell evolution	n-n interactions	Conclusion 000
Shell evolu	ition around	⁷⁸ Ni		

⁷⁸Ni identity card

- ✓ Doubly magic: N=50, Z=28, yet not a good core
- ✓ Low $2_1^+ \implies np-nh \implies Gap$? Valence Space? Interaction?
- ✓ Hints $0^+_2 2^+_2 \implies$ Spherical/Prolate
- X Difficult to produce : hard for fragmentation, out of reach for ISOL

Triumf ISOL production yield

M. Narchetto et al, International Particle Accelerator 2015 (IPAC 2015)

 Introduction
 Direct Reactions
 Shell evolution
 n-n interactions
 Conclusion

 000
 0000
 0000
 0000
 0000
 0000

 Shell evolution around
 78 Ni: Short term

High energy knock-out at RIKEN

SEASTAR

- 5 pps ⁷⁹Cu
- 290 pps ⁸⁰Zn
- 26% efficency
- 10 cm LH₂ target

R. Taniuchi et al, Nature 569, 53-58 (2019)

Introduction Dire	ect Reactions	Shell evolution	0	n-n interactions	Conclusion
Shell evoluti	on around	⁷⁸ Ni:	Short	term	
	High energy	knock-ou	t at RIKE	N	
Typical Setup • High energy be \rightarrow Thick targe • (p,2p) (p,3p) (\rightarrow Tracker • Building level s \rightarrow Nal detecto \rightarrow High-Efficie $\rightarrow \gamma - \gamma$ coinc	eam et p,pn) scheme or ency	SE	ASTAR ASTAR MINOS R. Taniuchi d	DALI2 et al, Nature 569, 53-58 (20	
	a hunch of ro	D'	. D		

IntroductionDirect0000000	Reactions	Shell evo	olution		n-n interactions	Conclusion
Shell evolutio	n around	⁷⁸ N	Ji: S	Short	term	
	High energy	knocł	k-out a	at RIKE	N	
Typical Setup• High energy bear \rightarrow Thick target• (p,2p) (p,3p) (p, \rightarrow Tracker• Building level sch \rightarrow Nal detector \rightarrow High-Efficien $\rightarrow \gamma - \gamma$ coinc.• Detail spectrosco \rightarrow Ge Tracking \rightarrow High state detail	m pn) neme cy ppy array		STR	ASSE (Silica DALI/CA	RIKEN/FAI	R) .H ₂ AGATA
\rightarrow Low Eff. but	good FWHM			Darms	tadt, RIKEN, LPC, F	AIR

a bunch of people

a bunch of people

Fusion and transfer-fission of U-Be at GANIL

Transfer and coulex at SPES-TRIUMF-ISOLDE

Low-energy Coulex: direct probe of collectivity

$\begin{array}{c} \mbox{Locating} \\ \mbox{deformed 2^+ in Zn and Ge} \end{array}$

- Small B(E2) spherical-deformed
- Large B(E2) deformed-deformed
- Quadrupolar moment \Rightarroweta
- Life-Time by DSAM

Coulex of ^{80,82,84}Ge and ^{78,80,82}Zn

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Shell evolu	ution around	d ⁷⁸ Ni: mi	id term	
	Transfer and coule	ex at SPES-TR	UMF-ISOLDE	
Typical Setup		Concep	tual design	
 Low energy → Thin ta → Compo → Implant → Cryogen 	^v beam arget ound foil (CD ₂) ted (Ti-t) nic (CHyMEN)			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Shell evo	olution aroun	d ⁷⁸ Ni: mi	d term	
	Transfer and cou	lex at SPES-TRI	UMF-ISOLDE	
Typical Setu	qL	Concep	tual design	
• Low ener \rightarrow Thin \rightarrow Com \rightarrow Impl \rightarrow Cryo • (d,p), (d, \rightarrow 4 π S	gy beam a target apound foil (CD ₂) anted (Ti-t) genic (CHyMEN) ,t), coulex Silicon array			
Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
---	--	-------------------------	------------------	------------
Shell evol	lution around	d ⁷⁸ Ni: mid	term	
	Transfer and coul	ex at SPES-TRIUN	/IF-ISOLDE	
Typical Setup	р	Conceptu	al design	
• Low energy \rightarrow Thin t \rightarrow Comp \rightarrow Implar \rightarrow Cryoge • (d,p), (d,t) \rightarrow 4 π Sil	y beam target ound foil (CD ₂) nted (Ti-t) enic (CHyMEN)), coulex licon array			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
Shell evo	lution arou	ınd ⁷⁸ Ni: r	nid term	
	Transfer and c	oulex at SPES-T	RIUMF-ISOLDE	
Typical Setu	р	Conc	eptual design	
• Low energy \rightarrow Thin \rightarrow Comp \rightarrow Impla \rightarrow Cryoge • (d,p), (d,t) \rightarrow 4 π Si • Detail spec \rightarrow Ge Tr \rightarrow High \rightarrow Low B	sy beam target sound foil (CD ₂) inted (Ti-t) genic (CHyMEN) c), coulex licon array ectroscopy racking array state density Eff. but good FWH	ТМ		

GRIT: IN2P3-INFN

Coulex of $^{78}\mathrm{Ni}$ and beyond at RIKEN and/or FAIR

A technical challenge

Probing physics beyond 2⁺₁

• Stat:

- \rightarrow need x10 beams
- $\rightarrow\,$ need high-efficiency
- Density of states:
 - \rightarrow need high-resolution
- High velocity:
 - \rightarrow need tracking

$\Rightarrow \text{Best tool: AGATA } 4\pi$ $\Rightarrow \text{Realistic} \sim 3\pi$

¹³²Sn

- ✓ Doubly magic, but a good core?
- ✓ ISOL/Frag accessible
- ⇒ Result to be improved
- \Rightarrow Whole region to be mapped
- ⇒ Removal: RIKEN/FAIR
- ⇒ Addition: SPES/TRIUMF/ISOLDE

¹³²Sn

- ✓ Doubly magic, but a good core?
- ✓ ISOL/Frag accessible
- ⇒ Result to be improved
- \Rightarrow Whole region to be mapped
- \Rightarrow Removal: RIKEN/FAIR
- ⇒ Addition: SPES/TRIUMF/ISOLDE

¹⁰⁰Sn

- X Out of reach today
- ✓ N=Z \Rightarrow Effect of p-n pairing
- \Rightarrow ISOL accessible?

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000			000	

nucleon-nucleon interactions

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	000000000	0000	000
p-n pairing	у 5			

pn transfer as an ideal probe

- isoscalar \Rightarrow (d,⁴He),(⁴He,d)
- isovector \Rightarrow (p,³He),(³He,p)

- Max effect in N=Z
- Max effect mid-shell

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	000000000	0000	000
	~			

pairing

Recently done:

- ⁵⁶Ni(p,³He)⁵⁴Co (LISE)
- ⁵²Fe(p,³He)⁵⁰Mn (LISE)

To be done:

- ⁵⁶Ni(³He,p)⁵⁸Cu (SPIRAL1+)
- ⁴⁸Cr(³He,p)⁵⁰Mn (SPIRAL1+)
- ⁴⁸Cr(p,³He)⁴⁶V (LISE)

Setup:

GRIT-AGATA-ZDS + cryo target

pn transfer as an ideal probe

- isoscalar \Rightarrow (d,⁴He),(⁴He,d)
- isovector \Rightarrow (p,³He),(³He,p)

a bunch of people

- Max effect in N=7
- Max effect mid-shell

(p,³He)

10

LISE exp.

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	000000000	0000	000
2		 - !		

3-body forces in light nuclei

life time as a probe

ab initio

- MBPT & IMSRG
- $LT \Rightarrow B(M1)$
- sensible to NNN

First AGATA result:

- encouraging
- DSAM technique
- ¹⁸0+TI
- difficult due to BR

Introduction	Direct Reactions	Shell evolution	n-n interactions ○○●○	Conclusion
3-body fo	rces in light	t nuclei		
life time as a Next step: ¹⁹ O(• Selectivity • Fine tune s • GRIT-AGA Next next: ¹⁵ C(• Hints VAN • Possible at • Specific set	probe (d,p) sensibility TA-VAMOS (d,p) IOS-AGATA LISE tup	(d,p)+D:	SAM	β ₂ 200
	5	imulated $^{20}\text{O}~\text{Z}^{*}_{2}$ decay with backing of 20 mg/cm² of Au		

E.Clement e775s MUGAST-AGATA-VAMOS 2020

Introduction	Direct Reactions	Shell evolution	n-n interactions ○○○●	Conclusion
Cluster stu	udy ⇔ <i>n</i> p- <i>n</i> h			

Phenomena of custering is emerging in n-rich nuclei \Rightarrow *cf* O.Sorlin talk

Recent MUGAST(GRIT)-AGATA-VAMOS results

a bunch of people	Direct Reactions
-------------------	------------------

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion ●○○
The collal	boration			
LPC: Achouri Delaunay Flavigny Gibelin Marques Matta Orr Parlog	GANIL: Clement de France Lemasson Roger Sorlin Rejmund	IJCLab: Assié Astier Beaumel Bluemen Franchoo Georgiev Ljungvall Lozeva Matea	IPHC: Ducl Didiv feld Mou Didiv I Didiv I Ducl	hene erjean kaddam ouet
	Many more	things not mentionr	ned	
	inally more			

Introduction	Direct Reactions	Shell evolution	n-n interactions	Conclusion
000	0000	000000000	0000	000

Direct reactions timeline

not mentionning ISOLDE, FRIB, RAON