Prospective In2p3 2020

L. Càceres on behalf of the ISOL-France community (44 collaborators)

 $V_{eff} = V_m + V_M$

fields?

	MonopoleMultipole- Spherical mean field- Quadrupole Correlations- Determined Single particle(deformation)	_
	This talk focus on laser spectroscopy, masses and beta- decay measurements ONLY!	fo.
Ho wit Ho inte	Systematics measurements from neutron rich to neutron deficient nuclei. Model independent observables -> Direct comparison with theory	p.) tion
Ho mo Ho	Only focused on N = 50 and N = 82. All the measurements can be extrapolated to other areas, not possible to cover all in one talk !	le conf.
con fiel	istrains/helps other physics β – Decay strength	

•

.

French Facilities: ALTO & S3-LEB/DESIR

Prin	nary D)ecay β	Mode	e ¹²⁸ Te _{Stable}	¹²⁹ Τе β-	¹³⁰ Te _{Stable}	¹³¹ Те _{β-}	¹³² Τе β-	¹³³ Τе β-	¹³⁴ Τе β-	¹³⁵ Τе β-	¹³⁶ Τе β-	¹³⁷ Τе β-	¹³⁸ Τе β-	¹³⁹ Τе β-	¹⁴⁰ Τе β-	¹⁴¹ Te β-
2β	¹²⁴ Sb β-	e-	¹²⁶ Sb β-	¹²⁷ Sb β-	¹²⁸ Sb β-	¹²⁹ Sb β-	¹³⁰ Sb β-	¹³¹ Sb β-	¹³² Sb β-	¹³³ Sb β-	¹³⁴ Sb β-	¹³⁵ Sb β-	¹³⁶ Sb β-	¹³⁷ Sb β-	¹³⁸ Sb β-	¹³⁹ Sb β-	¹⁴⁰ Sb β-
β+	¹²³ Sn β-	2 2 5	β+ p ¹²⁵ Sn ssion	¹²⁶ Sn β-	¹²⁷ Sn β-	¹²⁸ Sn β-	¹²⁹ Sn β-	¹³⁰ Sn β-	¹³¹ Sn β-	¹³² Sn β-	¹³³ Sn β-	¹³⁴ Sn β-	¹³⁵ Sn β-	¹³⁶ Sn β-	¹³⁷ Sn β-	¹³⁸ Sn β-	¹³⁹ Sn β-
e-	capture	¹²³ ln β-	¹²⁴ ln β-	¹²⁵ ln β-	¹²⁶ ln β-	¹²⁷ ln β-	¹²⁸ ln β-	¹²⁹ ln β-	¹³⁰ ln β-	¹³¹ ln β-	¹³² ln β-	¹³³ ln β-	¹³⁴ ln β-	¹³⁵ ln β-	¹³⁶ ln β-	¹³⁷ ln β-	
¹²⁰ Cd β-	¹²¹ Cd β⁻	¹²² Cd β-	¹²³ Cd β-	¹²⁴ Cd β-	¹²⁵ Cd β-	¹²⁶ Cd β-	¹²⁷ Cd β-	¹²⁸ Cd β-	¹²⁹ Cd β-	¹³⁰ Cd β-	¹³¹ Cd β-	¹³² Cd β-	¹³³ Cd β-	¹³⁴ Cd β-			
¹¹⁹ Ад _{β-}	¹²⁰ Ад _{β-}	¹²¹ Ад _{β-}	¹²² Ag β-	¹²³ Ад _{β-}	¹²⁴ Ад _{β-}	¹²⁵ Ад _{β-}	¹²⁶ Ад _{β-}	¹²⁷ Ад _{β-}	¹²⁸ Ag β-	¹²⁹ Ад _{β-}	¹³⁰ Ад _{β-}	¹³¹ Ag _{β-}	¹³² Ад _{β-}				
¹¹⁸ Pd β-	¹¹⁹ Pd β⁻	¹²⁰ Рd _{β-}	¹²¹ Pd β-	¹²² Pd β-	¹²³ Pd β-	¹²⁴ Pd β-	¹²⁵ Pd β-	¹²⁶ Pd β-	¹²⁷ Pd β-	¹²⁸ Pd β-	¹²⁹ Pd β-						
¹¹⁷ Rh _{β-}	¹¹⁸ Rh β-	¹¹⁹ Rh ⊮	¹²⁰ Rh β-	¹²¹ Rh β-	¹²² Rh β-	¹²³ Rh β-	¹²⁴ Rh β-	¹²⁵ Rh β-	¹²⁶ Rh β-	¹²⁷ Rh β-							
¹¹⁶ Ru ^{β-}	¹¹⁷ Ru ^{β-}	¹¹⁸ Ru ^{β-}	¹¹⁹ Ru β-	¹²⁰ Ru β-	¹²¹ Ru β-	¹²² Ru β-	¹²³ Ru β-	¹²⁴ Ru β-									
¹¹⁵ Тс _{β-}	¹¹⁶ Тс _{β-}	¹¹⁷ Τc β-	¹¹⁸ Τc β-	¹¹⁹ Τc β-	¹²⁰ Τc _{β-}	¹²¹ Τс β-											
¹¹⁴ Μο β-	¹¹⁵ Мо _β .	¹¹⁶ Μο β-	¹¹⁷ Μο β-	¹¹⁸ Μο β-													

Need for constrain mass models

Beta-Decay & Low-lying Collective Modes

- Investigation of the far-above-threshold γ emissions in n-rich nuclei decays: direct GT-feeding of the PDR ?
- Pygmy Dipole Resonance as a universal 'collective' excitation mode
- PDR's study puts constraints on theoretical models
- Connection to neutron skin (neutron stars, EOS of nrich matter, r-process nucleosynthesis)
- The detection of these high-energy gamma-rays need large efficiency devices (Pandemonium effect!!!)
 (PARIS/MONSTER + BEDO, TAS measurements)

Lucía Càceres, GANIL Caen (France) on behalf of ISOL FRANCE

FRANCE

	D. Lunney, Conseil Scientific IN2P3 physics ISOL (17)					
Ground-state property (lab)	Now	(Near) Future				
masses (CENBG, GANIL, IJCLab)	ISOLTRAP-ISOLDE TITAN-ISAC, GARIS-MR-TOF JYFLTRAP	MLLTRAP-ALTO/DESIR S ³ LEB-PILGRIM, PIPERADE-DESIR				
charge radii, moments & spins (IJCLab, GANIL)	COLLAPS-ISOLDE CRIS-ISOLDE Collinear @ IGISOL	LINO-ALTO/DESIR S ³ LEB-REGLIS <i>,</i> LUMIERE-DESIR				
moments & spins (IJCLab, IPHC)		POLAREX-ALTO				
β -delayed part. & γ spectro. (IJCLab, SUBATECH, CENBG, IPHC)	BEDO/TETRA-ALTO TAGS-Jyvaskyla, ISOLDE	BESTIOL-DESIR				

- Studies of ground-state properties important & complementary results (involving IN2P3) of high quality
- Instrumentation developed for ISOL experiments → coupled via gas cell to in-flight facilities
- Implication of many IN2P3 physicists in present experimental programs concerning all gs properties
- France now developing many ISOL-based instruments for the national facilities

	D. Lunney, Conse	il Scientific IN2P3 physics ISOL (17)
Ground-state property (lab)	Now	(Near) Future
masses (CENBG, GANIL, IJCLab)	ISOLTRAP-ISOLDE TITAN-ISAC, GARIS-MR-TOF JYFLTRAP	MLLTRAP-ALTO/DESIR S ³ LEB-PILGRIM, PIPERADE-DESIR
charge radii, moments & spins (IJCLab, GANIL)	COLLAPS-ISOLDE CRIS-ISOLDE Collinear @ IGISOL	LINO-ALTO/DESIR S ³ LEB-REGLIS, LUMIERE-DESIR
moments & spins (IJCLab, IPHC)		POLAREX-ALTO
eta -delayed part. & γ spectro. (IJCLab, SUBATECH, CENBG, IPHC)	BEDO/TETRA-ALTO TAGS-Jyvaskyla, ISOLDE	BESTIOL-DESIR

• Studies of ground-state properties important & complementary – results (involving IN2P3) of high quality

- ◆ Instrumentation developed for ISOL experiments → coupled via gas cell to in-flight facilities
- Implication of many IN2P3 physicists in present experimental programs concerning all gs properties
- France now developing many ISOL-based instruments for the national facilities

	D. Lunney, Conse	I Scientific IN2P3 physics ISOL (17)
Ground-state property (lab)	Now	(Near) Future
masses	ISOLTRAP-ISOLDE	MLLTRAP-ALTO/DESIR
(CENBG, GANIL, IJCLab)	TITAN-ISAC, GARIS-MR-TOF	S ³ LEB-PILGRIM,
	JYFLTRAP	PIPERADE-DESIR
charge radii, moments & spins	COLLAPS-ISOLDE	LINO-ALTO/DESIR
(IJCLab, GANIL)	CRIS-ISOLDE	S ³ LEB-REGLIS,
	Collinear @ IGISOL	LUMIERE-DESIR
moments & spins		POLAREX-ALTO
(IJCLab, IPHC)		
eta -delayed part. & γ spectro.	BEDO/TETRA-ALTO	BESTIOL-DESIR
(IJCLab, SUBATECH, CENBG, IPHC)	TAGS-Jyvaskyla, ISOLDE	

- Studies of ground-state properties important & complementary results (involving IN2P3) of high quality
- Instrumentation developed for ISOL experiments → coupled via gas cell to in-flight facilities
- Implication of many IN2P3 physicists in present experimental programs concerning all gs properties
- France now developing many ISOL-based instruments for the national facilities

Mass spectrometry worldwide

Lucía Càceres, GANIL Caen (France) on behalf of ISOL FRANCE

Courtesy P. Ascher

30

Existing experiments for beam manipulation

PAUL TRAP

MORA @LPCCaen/GANIL

Courtesy E. Minaya Ramirez

MR-TOF-MS LEB

Mass measurements of ground and isomeric states

life-time measurements, E0 decay strengths

PENNING TRAP

MLLTRAP @ ALTO

	D. Lunney, Conse	il Scientific IN2P3 physics ISOL (17)
Ground-state property (lab)	Now	(Near) Future
masses (CENBG, GANIL, IJCLab)	ISOLTRAP-ISOLDE TITAN-ISAC, GARIS-MR-TOF JYFLTRAP	MLLTRAP-ALTO/DESIR S ³ LEB-PILGRIM, PIPERADE-DESIR
charge radii, moments & spins (IJCLab, GANIL)	COLLAPS-ISOLDE CRIS-ISOLDE Collinear @ IGISOL	LINO-ALTO/DESIR S ³ LEB-REGLIS, LUMIERE-DESIR
moments & spins (IJCLab, IPHC)		POLAREX-ALTO
eta -delayed part. & γ spectro. (IJCLab, SUBATECH, CENBG, IPHC)	BEDO/TETRA-ALTO TAGS-Jyvaskyla, ISOLDE	BESTIOL-DESIR

• Studies of ground-state properties important & complementary – results (involving IN2P3) of high quality

- ◆ Instrumentation developed for ISOL experiments → coupled via gas cell to in-flight facilities
- Implication of many IN2P3 physicists in present experimental programs concerning all gs properties
- France now developing many ISOL-based instruments for the national facilities

Laser spectroscopy worldwide

Laser spectroscopy worldwide

R

S³ – LEB STATUS - REGLIS

	D. Lunney, Conse	il Scientific IN2P3 physics ISOL (17)
Ground-state property (lab)	Now	(Near) Future
masses	ISOLTRAP-ISOLDE	MLLTRAP-ALTO/DESIR
(CENBG, GANIL, IJCLab)	TITAN-ISAC, GARIS-MR-TOF	S ³ LEB-PILGRIM,
	JYFLTRAP	PIPERADE-DESIR
charge radii, moments & spins	COLLAPS-ISOLDE	LINO-ALTO/DESIR
(IJCLab, GANIL)	CRIS-ISOLDE	S ³ LEB-REGLIS,
	Collinear @ IGISOL	LUMIERE-DESIR
	C	
moments & spins		POLAREX-ALTO
(IJCLab, IPHC)		
β -delayed part. & γ spectro.	BEDO/TETRA-ALTO	BESTIOL-DESIR
(IJCLab, SUBATECH, CENBG, IPHC)	TAGS-Jyvaskyla, ISOLDE	
(IJCLab, SUBATECH, CENBG, IPHC)	TAGS-Jyvaskyla, ISOLDE	

- Studies of ground-state properties important & complementary results (involving IN2P3) of high quality
- Instrumentation developed for ISOL experiments → coupled via gas cell to in-flight facilities
- Implication of many IN2P3 physicists in present experimental programs concerning all gs properties
 38
- France now developing many ISOL-based instruments for the national facilities

Experimental devices

Combination of high energy gamma measurements (PARIS) with high resolution (Clover) -> First campaign of measurements at ALTO, prospectives at DESIR

- 100 cylindrical BC501A cell of 20 cm x 5 cm
- Energy threshold E_n ~150 keV
- Good neutron timing ~1ns
- Digital DAQ 14bits & 1 Gsample/s

Experimental devices

TAS available

ROCINANTE (IFIC Valencia/Surrey)

- 12 BaF₂ covering 4π
- Detection efficiency of γ ray cascade >80% (up to 10 MeV)
- Coupled with a Si detector for β
- 7 nuclei (4 delayed neutron emitters) measured (6 for DH and 2 for anti-v)

TAS set-ups that could be placed @ DESIR

DTAS (IFIC Valencia)

- 18 Nal(TI) crystals of 15cm × 15cm × 25 cm
- Individual crystal resolutions: 7-8%
- Total efficiency: 80-90%
- Coupled with plastic scintillator for β
- 12 nuclei for anti-v measured & 11 for DH

(NA)²STARS: Neutrinos Applications Nuclear Astrophysics - Segmented Total Absorption with high Resolution Spectrometer

French-Spanish collaboration

Short term needs vs. Threats

NEED	RISKs	CONSEQUENCES
Finalization IN A TIMELY MANNER S3	First experiment later than 2023	Competition with other labs, fewer nuclei left to study
Accomplishment of the A/Q = 7	No A/Q = 7	N = Z physics program strongly affected, loose of the leadership. Not competitive with respect to FRIB (A<80)
Fast gas cell	No manpower for R&D	Difficulties to measure exotic nuclei with $t_{1/2} \lesssim 100$ ms
Full development of DESIR	Partial development	Reduction of physics output
Complete laser system for DESIR	No budget assured	No laser spectroscopy experiments at DESIR

Long term needs

iiiMON

20??)

Ganil

Neutron rich nuclei @ DESIR

Open new horizons for the physics @ DESIR exploiting full capabilities of the facility (talk P. Delahaye)

ETIC: Electron-Radioactive Ion Collider

- **1000 gain in luminosity** compared to fresh state of the art instruments (10³⁰ cm⁻² s⁻¹ at reach)
- Relies on high-intensity low-energy RI production at GANIL (SPIRAL, fission products, S3)
- New exciting and world-unique physics program with Radioactive Ions possible at GANIL

First step: demonstrator to validate some of the key points of such a machine (Talk F. Flavigny)

Long term needs

High light

¹⁰⁰Sn & ¹³²Sn region

Ideal laboratory for testing advance nuclear theory calculations.

ISOL-type measurements in those regions will constrain effectively the different nuclear theories and thus will provide an step forward on the understanding of the nuclear force

Finally here it is the nuclear chart!

Time Line

Thank you !!!

