Brisure et restauration de symétries

Michael Bender

Institut de Physique des 2 Infinis de Lyon
CNRS/IN2P3 \& Université de Lyon \& Université Lyon 1
F-69622 Villeurbanne, France

Prospectives Nationales en Physique et Astrophysique Nucléaire (GT02)
Caen, 30-31 January 2020

Symmetries of the nuclear Hamiltonian

- Rotational
- Space inversion
- Global gauge space
- Translational \& Galilean invariance
- Time translation
- Time reversal
\Rightarrow angular momentum
\Rightarrow parity
\Rightarrow proton and neutron number
\Rightarrow separation of center-of-mass and internal motion
\Rightarrow energy conservation

Approximate symmetry of the nuclear Hamiltonian

- Rotation in isospin space $\quad \Rightarrow$ isospin

Symmetries of the nuclear Hamiltonian

- Rotational
- Space inversion
- Global gauge space
- Translational \& Galilean invariance
- Time translation
- Time reversal
\Rightarrow angular momentum
\Rightarrow parity
\Rightarrow proton and neutron number
\Rightarrow separation of center-of-mass and internal motion
\Rightarrow energy conservation

Approximate symmetry of the nuclear Hamiltonian

- Rotation in isospin space

$$
\Rightarrow \text { isospin }
$$

Consequences of symmetries

- Quantum numbers of states
- Selection rules for electromagnetic/weak/strong transitions between states
- Correlations (nucleons do not move independently)

But many nuclear phenomena are interpreted as if symmetries are broke CחrS

Möller, Sierk, Bengtsson, Sagawa, Ichikawa, ADNDT98 (2012) 149

- deformation (collective rotational bands!)
- shape coexistence

But many nuclear phenomena are interpreted as if symmetries are broke CחrS

Möller, Sierk, Bengtsson, Sagawa, Ichikawa, ADNDT98 (2012) 149

- deformation (collective rotational bands!)
- shape coexistence
- fission

- clusterisation
- pairing (nuclear superfluidity)

Scamps \& Simenel, Nature 564 (2018) 382

Symmetry-conserving approaches

- conventional shell-model
- (most) conventional ab-initio approaches
- ...

Symmetry-breaking approaches

- Self-consistent mean-field models (either EDF-based or valence space with schematic interactions)
- Cluster models
- ...

Symmetry-breaking \& restoration

- Projected symmetry-breaking states
- Monte-Carlo shell model
- ...

Technically, " projection" means inserting a numerical discretization of an operator that extracts the targeted components when calculating matrix elements.
"Special case" of a Generator Coordinate Method (non-orthogonal CI)

Typical situations:

- localised finite system (broken translational symmetry)
- axial deformation (partially broken rotational symmetry)
- non-axial deformation (broken rotational symmetry)
- states with finite angular momentum (broken time-reversal)
- octupole deformation (broken parity + broken rotational symmetry)
- HFB-type pairing (broken global gauge symmetry)

Some rarely addressed situations

- absence of more than one plane symmetry
- broken signature (angular momentum not in the direction of a major axis)
- proton-neutron mixing (broken "axiality" in isospin)
- lowest projected state usually has more broken symmetries than mean-field minimum
- additional correlation energy varies quickly for transitional nuclei

Bender, Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Bender, Bertsch, Heenen, PRCC 73 (2006) 034322; PRC 78 (2008) 054312

- In odd- A nuclei, bands get easily mixed.

Heenen, Bally, Bender, Ryssens, EPJ Web of Conf 131 (2016) 02001;
Bally, Bender, Heenen, to be published
seniority- 2 states in ${ }^{46} \mathrm{Ca}$

- Characteristic pattern emerges when 2qp states are mixed in
- Mixed with collective bands.

Non-standard deformation modes might only show up when breaking \& restoring symmetries C@IS

Clustering

Dominant configuration in the ground-state of ${ }^{12} \mathrm{C}$

Dominant configurations in the Hoyle state

Parity, angular-momentum \& center-of-massprojected Fermionic Molecular Dynamics
Chernykh et al, PRL98 (2007) 032501; Neff, JPhys Conf Ser 403 (2012) 012028

Parity \& angular-momentum projected axial relativistic mean field
Marevic, Ebran, E. Khan, T. Niksic, Vretenar, PRC 99, 034317 (2019)

Non-standard deformation modes might only show up when breaking \& restoring symmetries C@IS

Clustering

Dominant configuration in the ground-state of ${ }^{12} \mathrm{C}$

Dominant configurations in the Hoyle state

Parity, angular-momentum \& center-of-massprojected Fermionic Molecular Dynamics
Chernykh et al, PRL98 (2007) 032501; Neff, JPhys Conf Ser 403 (2012) 012028

Parity \& angular-momentum projected axial relativistic mean field
Marevic, Ebran, E. Khan, T. Niksic, Vretenar, PRC 99, 034317 (2019)

Exotic deformations

borrowed from a talk by J. Dudek @ IPNL (2017)

- physically broken by the Coulomb interaction, the difference of proton and neutron masses, and small contributions of the strong interaction
- spuriously broken by mean-field methods, with some severe consequences for calculated properties of nuclei close to the $N=Z$ line.
- spurious breaking can be removed by diagonalizing the symmetry-breaking Hamiltonian in a basis of isospin-projected mean-field states.
- isospin projection mixes proton and neutron single-particle states.
- controlling the physical isospin breaking has relevance for tests of the standard model through the analysis of superallowed $0^{+} \rightarrow 0^{+}$Fermi β decay

Example: Isospin correction to Fermi decays

Konieczka, P. Baczyk, Satuła, arXiv:1909.09350

Need for specific functionals

$\mathrm{N} \& \mathrm{Z}$ projecction of an HFB state of ${ }^{18} \mathrm{O}$

Need for specific functionals

$\mathrm{N} \& \mathrm{Z}$ projecction of an HFB state of ${ }^{18} \mathrm{O}$

- energy as a function of deformation
- general EDF

Lacroix, Duguet, Bender, PRC 79 (2009) 044318
Bender, Duguet, Lacroix, PRC 79 (2009) 044319
Duguet, Bender, Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320

Need for specific functionals

$\mathrm{N} \& \mathrm{Z}$ projecction of an HFB state of ${ }^{18} \mathrm{O}$

- energy as a function of deformation
- general EDF

Lacroix, Duguet, Bender, PRC 79 (2009) 044318
Bender, Duguet, Lacroix, PRC 79 (2009) 044319
Duguet, Bender, Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320

J-projetion of a HF state of ${ }^{25} \mathrm{Mg}$

- energy decomposition of one pathological state as a function of discretisation of the projector
- Left: density-dependent EDF
- right: non-density-dependent EDF from generating operator
- predictive well-defined EDFs turn out to be difficult to construct; necessary operator structure has not yet been identified.

triaxial HF, axial J projection
Bounseng Bounthong, thèse, Strasbourg, 2016

triaxial HF, axial J projection Bounseng Bounthong, thèse, Strasbourg, 2016

Bally, Sánchez-Fernández, Rodríguez, PRC 100 (2019) 044308

Multi-Reference In-Medium

 Similarity Renormalization Group

Access to $0 \nu \beta \beta$ matrix element.

Yao, Engel, Wang, Jiao, Hergert, PRCC 98, 054311 (2018); Yao, Bally, Engel, Wirth, Rodríguez, Hergert, arXiv:1908.05424

Many-body perturbation theory combined with
symmetry-breaking+restoration

Schematic pairing Hamiltonian

Ripoche, Lacroix, Gambacurta, Ebran, Duguet,
PRC95, 014326 (2017)
Also particle-number restored Bogoliubov Coupled-Cluster,

Qiu, Henderson, Duguet, Scuseri, PRC 99 (2019) 044301

Bogoliubov MBPT

Huge reduction of CPU time!

Tichai, Arthuis .Duguet, Hergert, . Somà, Roth, PLB 786 (2018) 195

Why breaking \& restoring symmetries?

- Symmetry breaking configurations simplify the interpretation of numerous nuclear phenomena
- Breaking \& restoring symmetries instead of using symmetry-conserving schemes can enormously reduce numerical cost because of much quicker convergence with the number of (much richer) configurations to be considered.

Necessary developments concerning EDF methods

- breaking additional symmetries to describe exotic shapes and/or exotic rotational phenomena
- combined restoration of many broken symmetries
- Construct EDF that is well-defined for symmetry restoration

Transfer of "breaking \& restoring symmetries" to other frameworks

- valence-space symmetry-restored GCM with shell-model Hamiltonians.
- ab-initio calculations of singly- doubly-open shell nuclei (Green's functions, Coupled-Cluster, Many-Body Perturbation Theory, Multi-Reference In-Medium-Similarity- Renormalization Group, No-core shell model, ...)
- Time-dependent approaches (EDF-based and others)

Advancing all areas will require reinforcement with young motivated scientists.

