Brisure et restauration de symétries

Michael Bender

Institut de Physique des 2 Infinis de Lyon CNRS/IN2P3 & Université de Lyon & Université Lyon 1 F-69622 Villeurbanne, France

Prospectives Nationales en Physique et Astrophysique Nucléaire (GT02)

Caen, 30-31 January 2020

Symmetries

Symmetries of the nuclear Hamiltonian

- Rotational
- Space inversion
- Global gauge space
- Time translation ۰
- Time reversal

Approximate symmetry of the nuclear Hamiltonian

• Rotation in isospin space \Rightarrow isospin

- \Rightarrow angular momentum
- \Rightarrow parity
- \Rightarrow proton and neutron number
- Translational & Galilean invariance \Rightarrow separation of center-of-mass and internal motion

 \Rightarrow energy conservation

Symmetries

Symmetries of the nuclear Hamiltonian

- Rotational
- Space inversion
- Global gauge space
- Translational & Galilean invariance
- Time translation
- Time reversal

Approximate symmetry of the nuclear Hamiltonian

■ Rotation in isospin space ⇒ isospin

Consequences of symmetries

- Quantum numbers of states
- Selection rules for electromagnetic/weak/strong transitions between states
- Correlations (nucleons do not move independently)

- \Rightarrow angular momentum
- \Rightarrow parity
- \Rightarrow proton and neutron number
- $\Rightarrow\,$ separation of center-of-mass and internal motion

 \Rightarrow energy conservation

Möller, Sierk, Bengtsson, Sagawa, Ichikawa, ADNDT98 (2012) 149

- deformation (collective rotational bands!)
- shape coexistence

Image: A matrix and a matrix

But many nuclear phenomena are interpreted as if symmetries are broke CNTS

Möller, Sierk, Bengtsson, Sagawa, Ichikawa, ADNDT98 (2012) 149

- deformation (collective rotational bands!)
- shape coexistence
- fission
- clusterisation
- pairing (nuclear superfluidity)

(日)

Scamps & Simenel, Nature 564 (2018) 382

Symmetry-conserving approaches

- conventional shell-model
- (most) conventional ab-initio approaches

• . . .

Symmetry-breaking approaches

• Self-consistent mean-field models (either EDF-based or valence space with schematic interactions)

Cluster models

• . . .

Symmetry-breaking & restoration

- Projected symmetry-breaking states
- Monte-Carlo shell model
- . . .

Technically, "projection" means inserting a numerical discretization of an operator that extracts the targeted components when calculating matrix elements.

"Special case" of a Generator Coordinate Method (non-orthogonal CI)

cnrs

Typical situations:

- localised finite system (broken translational symmetry)
- axial deformation (partially broken rotational symmetry)
- non-axial deformation (broken rotational symmetry)
- states with finite angular momentum (broken time-reversal)
- octupole deformation (broken parity + broken rotational symmetry)
- HFB-type pairing (broken global gauge symmetry)

Some rarely addressed situations

- absence of more than one plane symmetry
- broken signature (angular momentum not in the direction of a major axis)
- proton-neutron mixing (broken "axiality" in isospin)

Image: A mathematical states and a mathem

- lowest projected state usually has more broken symmetries than mean-field minimum
- additional correlation energy varies quickly for transitional nuclei

Bender, Bonche, Duguet, Heenen, PRC 69 (2004) 064303

Bender, Bertsch, Heenen, PRCC 73 (2006) 034322; PRC 78 (2008) 054312

< □ > < 同 >

• In odd-A nuclei, bands get easily mixed.

Heenen, Bally, Bender, Ryssens, EPJ Web of Conf 131 (2016) 02001; Bally, Bender, Heenen, to be published

Mixed with collective bands.

Image: A mathematical states and the states and

Bender, Bally, Heenen, to be published

Clustering

Dominant configuration in the ground-state of ¹²C

Dominant configurations in the Hoyle state

Parity, angular-momentum & center-of-massprojected Fermionic Molecular Dynamics

Chernykh et al, PRL98 (2007) 032501; Neff, JPhys Conf Ser 403 (2012) 012028

Parity & angular-momentum projected axial relativistic mean field

Marevic, Ebran, E. Khan, T. Niksic, Vretenar, PRC 99, 034317 (2019)

Clustering

Dominant configuration in the ground-state of ¹²C

Dominant configurations in the Hoyle state

Parity, angular-momentum & center-of-massprojected Fermionic Molecular Dynamics

Chernykh et al, PRL98 (2007) 032501; Neff, JPhys Conf Ser 403 (2012) 012028

Parity & angular-momentum projected axial relativistic mean field

Marevic, Ebran, E. Khan, T. Niksic, Vretenar, PRC 99, 034317 (2019)

< 口 > < 同 >

borrowed from a talk by J. Dudek @ IPNL (2017)

- physically broken by the Coulomb interaction, the difference of proton and neutron masses, and small contributions of the strong interaction
- spuriously broken by mean-field methods, with some severe consequences for calculated properties of nuclei close to the N = Z line.
- spurious breaking can be removed by diagonalizing the symmetry-breaking Hamiltonian in a basis of isospin-projected mean-field states.
- isospin projection mixes proton and neutron single-particle states.
- controlling the physical isospin breaking has relevance for tests of the standard model through the analysis of superallowed $0^+ \rightarrow 0^+$ Fermi β decay

Example: rotational bands of ⁵⁶Ni

Satuła, Dobaczewski, Nazarewicz, Rafalski, PRC 81 (2010) 054310

(日)

Konieczka, P. Baczyk, Satuła, arXiv:1909.09350

Need for specific functionals

N & Z projecction of an HFB state of ¹⁸O

- energy as a function of deformation
- general EDF

Lacroix, Duguet, Bender, PRC 79 (2009) 044318 Bender, Duguet, Lacroix, PRC 79 (2009) 044319 Duguet, Bender, Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320

M. Bender (IP2I Lyon)

Need for specific functionals

- energy as a function of deformation
- general EDF

Lacroix, Duguet, Bender, PRC 79 (2009) 044318 Bender, Duguet, Lacroix, PRC 79 (2009) 044319 Duguet, Bender, Bennaceur, Lacroix, Lesinski, PRC 79 (2009) 044320

- energy decomposition of one pathological state as a function of discretisation of the projector
- Left: density-dependent EDF
- right: non-density-dependent EDF from generating operator

< □ > < 同 >

 predictive well-defined EDFs turn out to be difficult to construct; necessary operator structure has not yet been identified.

triaxial HF, axial J projection

Bounseng Bounthong, thèse, Strasbourg, 2016

M. Bender (IP2I Lyon)

(日)

Symmetry-breaking+restoration as an efficient tool for shell-model calculations

triaxial HF, axial J projection

ction fully symmetry-breaking HFB, N+Z+J+parity projection+GCM

Bally, Sánchez-Fernández, Rodríguez, PRC 100 (2019) 044308

Bounseng Bounthong, thèse, Strasbourg, 2016

M. Bender (IP2I Lyon)

Brisure et restauration de symétries

30 January 2020 12 / 14

Multi-Reference In-Medium Similarity Renormalization Group

Access to $0\nu\beta\beta$ matrix element.

Yao, Engel, Wang, Jiao, Hergert, PRCC 98, 054311 (2018); Yao, Bally, Engel, Wirth, Rodríguez, Hergert, arXiv:1908.05424

Schematic pairing Hamiltonian

Ripoche, Lacroix, Gambacurta, Ebran, Duguet,

PRC95, 014326 (2017)

Also particle-number restored Bogoliubov Coupled-Cluster,

Qiu, Henderson, Duguet, Scuseri, PRC 99 (2019) 044301

Huge reduction of CPU time!

Tichai, Arthuis .Duguet, Hergert, . Somà, Roth, PLB 786 (2018) 195

Outlook

Why breaking & restoring symmetries?

- Symmetry breaking configurations simplify the interpretation of numerous nuclear phenomena
- Breaking & restoring symmetries instead of using symmetry-conserving schemes can enormously reduce numerical cost because of much quicker convergence with the number of (much richer) configurations to be considered.

Necessary developments concerning EDF methods

- breaking additional symmetries to describe exotic shapes and/or exotic rotational phenomena
- combined restoration of many broken symmetries
- Construct EDF that is well-defined for symmetry restoration

Transfer of "breaking & restoring symmetries" to other frameworks

- valence-space symmetry-restored GCM with shell-model Hamiltonians.
- ab-initio calculations of singly- doubly-open shell nuclei (Green's functions, Coupled-Cluster, Many-Body Perturbation Theory, Multi-Reference In-Medium-Similarity- Renormalization Group, No-core shell model, ...)
- Time-dependent approaches (EDF-based and others)

Advancing all areas will require reinforcement with young motivated scientists.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >