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Shell Model: Giant Computation

New opportunities:BMF-SM
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Structure and decay of exotic nuclei

e Nowadays, LSSM calculations in extended
model spaces comprising a few oscillator shells
to deal with the changing shell structure and the
onset of deformation in very neutron-rich nuclei

e Development of accurate description of
isospin-symmetry breaking using charge-
dependent hamiltonians

e Construction of fully microscopic interactions
for valence-space calculations as a path towards
regions where no experimental data are avail-
able

e Development of numerical techniques and
state-of-the-art computations

e Search for additionnal guidelines and short-
cuts using symmetry based approaches

PHYSICAL REVIEW C 100054329 (2019)
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Weak-interaction processes and ph

the Standard Model

Isospin symmetry breaking in the Shell-Model context
3

= Exp
4 T=172 Theory -

e Accurate description of Isospin violation and 5
associated phenomena through development of
Isospin Non Conserving Shell Model hamiltoni-
ans in extended valence spaces:

((sd), (pf), (51/203/2f7/23/2) and beyond

e 3 —pand 3 — py decay studies and extraction
of Isospin mixing in the IAS

e Development of Isospin Non Conserving Shell
Model hamiltonian in the (sd — pf) valence
space and numerous applications

e Improvement of MED and TED description
within a band

e Interpretation for b and c coefficients stagger-
ing

e support to forthcoming experimental studies
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the Standard Model

Isospin symmetry breaking in the Shell-Model context
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Weak-interaction processes and ph

the Standard Model

Superallowed 3 0™ — 0™ as a test of fundamental interactions

e Large scale calculations for all emitters below
A < 40 including nuclei in the vicinity of “0Ca

e Use of Isospin Non Conserving hamiltonians
and Woods-Saxon wave functions for untrun-
cated sd and pf calculations

e New approach of radii determination without
closure approximation

e Use of new effective interactions developped
in Strasbourg

e Lanczos Structure Function Method for §¢
o New (sd — pf) interaction

o Effective Fermi Operator

o HF wave functions

o New emitters such as 58Zn
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the Standard Model

Superallowed 3 0™ — 0™ as a test of fundamental interactions
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Weak-interaction processes and ph

the Standard Model

Reliable nuclear matrix elements needed to plan and fully exploit
impressive experiments looking for neutrinoless 3/ decay

o Matrix elements differences
between present calculations, factor 2-3
besides additionnal “quenching” ?

¢ 48Ca and 76Ge matrix elements
in larger configuration space increase < 30% ,
missing correlations introduced in IBM, EDF

e First Ab-initio calculations of 3 decays do not
need additionnal “quenching”,
Ab-initio “8Ca matrix elements in progress

e 2v 33 decay, u-capture/v-nucleus scattering
and double Gamow-Teller transitions
can give insight on Ov 38 matrix elements
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the Standard Model
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Weak-interaction processes and ph

the Standard Model

Reliable nuclear matrix elements needed to plan and fully exploit
impressive experiments looking for neutrinoless double-beta decay

o Matrix elements differences
between present calculations, factor 2-3
besides additionnal “quenching” ?

[TP7,(0F = 0F)]~" = Go, [M®*[2(mfP)?

PHYSICAL REVIEW C 100, 014316 (2019)

° 48 Ca and 76Ge ma'[rIX e|ementS Renormalization of the Gamow-Teller operator within the realistic shell model
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Weak-interaction processes and ph

the Standard Model

Reliable nuclear matrix elements needed to plan and fully exploit
impressive experiments looking for neutrinoless double-beta decay
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Stellar rp and r-processes and nucle

Proton capture reaction rates calculations
for rp process (X-ray bursts) or novae

Na(ov) = 1.54 % 10"5(uTg) =3/ 2wryexp(—1L8E ) cm?. s~ mol

% Ar(p, 7)%®

e Strong impact reactions (Cybert et al. AAJ, 2016):

% Ni(er, ) cu,® Cu(p, )% 20" Ga(p, v)% zn

e Theoretical determination of unknown quantities:

logm[rale(cmss'lmol'l)]

s}

Resonance energies (with Isospin breaking)
Widths with respect to proton and gamma emission 126

e Several reactions in sd shell 100
pf shell nuclei around 40ca

Thomas-Ehrman shift in sd shell

(a,7), (a, p), (b, a) capture/emission modeling
22 Mg (cx, p)25 Al and other reactions

Contribution (%)
3

e p — sd — pf valence space for non-natural parity states

Electron capture rates around 40Ca -1.0
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Stellar rp and r-processes and nucle

Radiative Neutron Capture:

Theoretical Models and Applications

e SM can provide reliable spectroscopic factors and help testing
usual theoretical assumptions in cases no experimental data is
known — work in progress

e Spectroscopy of neutron-rich nuclei around 78Ni is still of in-
terest for nuclear models

e £1/M1 RSF and PSF can be microscopically obtained within
the SM

o Shell effects survive at higher excitation energies and are visi-
ble in M1 dipole strength functions

e M1 upbend has a significant impact on neutron capture cross
sections in exotic nuclei : X10

e develop/constraint/improve global microscopic models (HFB,
QRPA) on a SM basis for all kind of applications (astrophysics,
nuclear data, reactors etc ...)

Direc capture

resonant
capture

A’lx

DA



Stellar rp and r-processes and nucl

Radiative Neutron Capture:

Theoretical Models and Applications Kamila Sieja
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Stellar rp and r-processes and nucle

Radiative Neutron Capture:
Theoretical Models and Applications

e SM can provide reliable spectroscopic factors and help testing
usual theoretical assumptions in cases no experimental data is

known — work in progress 10 .
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SM Studies

o High predictive power, accurate and detailed information (structure near and far from
stability, nuclear and electroweak processes)

e success and robustness of the approach encourage further developments and
applications

o Potential powerful description of simultaneous low-lying phenonema but need of
precise dedicated local studies

e Intense support for future experimental programs and developments (but manpower
insufficient ...)

e Existing cross fertilizing collaborations in several domains: ab-initio studies, isospin
symmetry breaking, astrophysics, 83 decay ... and others to develop !
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FIG. 2. Correlation between the energies of the 2 excited state
in **Ca and "®Ni, obtained from the interactions NNLO, (circle),
“2.0/2.0 (PWA)” (square), “2.0/2.0 (EM)” (diamond), “2.2/2.0
(EM)” (triangle up), and “1.8/2.0 (EM)” (triangle down). The
error bars estimate uncertainties from enlarging the model space
from N =12 to N = 14. The thin horizontal line marks the
known energy of the 2] state in *3Ca.
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Ab-initio challenge
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Ab-initio challenge
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Stellar rp and r-processes and nucleo

Resonant Capture

n+(ZA-1) (Z,A) o+ (Z-2.A-2)
Target Nucleus Compound Nucleus Residual Nucleus
TP 1
Ei.n J+1
%o (o) = 2Mnﬁn(2J"+1)(2Jn+1)Z( )T“+T"
for E,, ~keV T > Ty — oV~ Ty

E;j n. M; - center-of-mass energy, reduced mass of the system
Jn = 1/2-neutron spin
TH = To(E,J m El'\ J' 2l') TY = T(E,J,m; Ey, Jy, )~ transmission coefficients

For a given multipolarity (CHE)
TXL(E,J,:r,E",JV,zV):2nE§L+1 fx (E, Ey) %5’
wTest, using SM, the key ingredients of Hauser-Feshbach cal- J77:
culations: v

@ description of y emission spectra
@ Brink-Axel hypothesis —as




Stellar rp and r-processes and nucle

Direct Capture

Direc capture

resonant
capture

A*lx

Xi. Yuand S. Goriely, Phys. Rev. C86 (2012) 045801

oC(E) = Z Sroqis(E)

]E Y p(Erdr.m) x oM dE;

X Jpmy

If no experimental data available:

@ use combinatorial model for the level
density with (5)=0.5

«=The key ingredients: low-energy levels and
spectroscopic factors

»=Validate theoretical approximations (HFB) in
exotic nuclei using SM predictions

o (=) = = £ DA
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