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New Frontiers for Shell Model calculations
Fundamental interactions
and collectives excitations

Deformation, Superdeformation,
Dipole/M1 resonances

Superfluidity, Symmetries

Isospin symmetry breaking

Weak processes

β decay ⇐⇒ fundamental interactions

ββ decay ⇐⇒ nature of neutrinos
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• define effective interaction

• HeffΨeff = EΨeff

• build and diagonalize energy matrix

Nuclear structure far from stability

New magic numbers

Vanishing of shell closures

Astrophysics and nucleosynthesis

rp process

r process



Shell Model: Giant Computations

exponential growth of basis
dimensions:
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In pf shell :
56Ni 1,087,455,228

In pf -sdg space :
78Ni 210,046,691,518

Actual limits in giant diagonalizations:

0.2 1012 for 114Sn core excitations

Largest matrices up to now contain

up to ∼ 1014 non-zero matrix
elements.

This would require more than
1,000,000 CD-ROM’s to store the
information for a single matrix !

They cannot be stored on hard disk
and are computed on the fly.

New opportunities:BMF-SM
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Structure and decay of exotic nuclei

• Nowadays, LSSM calculations in extended

model spaces comprising a few oscillator shells

to deal with the changing shell structure and the

onset of deformation in very neutron-rich nuclei

• Development of accurate description of

isospin-symmetry breaking using charge-

dependent hamiltonians

• Construction of fully microscopic interactions

for valence-space calculations as a path towards

regions where no experimental data are avail-

able

• Development of numerical techniques and

state-of-the-art computations

• Search for additionnal guidelines and short-

cuts using symmetry based approaches
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Weak-interaction processes and physics beyond

the Standard Model

Isospin symmetry breaking in the Shell-Model context

• Accurate description of Isospin violation and

associated phenomena through development of

Isospin Non Conserving Shell Model hamiltoni-

ans in extended valence spaces:

((sd), (pf ), (s1/2d3/2f7/2p3/2) and beyond

• β− p and β− pγ decay studies and extraction

of Isospin mixing in the IAS

• Development of Isospin Non Conserving Shell

Model hamiltonian in the (sd − pf ) valence

space and numerous applications

• Improvement of MED and TED description

within a band

• Interpretation for b and c coefficients stagger-

ing

• support to forthcoming experimental studies
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Weak-interaction processes and physics beyond

the Standard Model

Isospin symmetry breaking in the Shell-Model context

• Accurate description of Isospin violation and

associated phenomena throuh development of

Isospin Non Conserving Shell Model hamiltoni-

ans in extended valence spaces:

((sd), (pf ), (s1/2d3/2f7/2p3/2) and beyond

• β− p and β− pγ decay studies and extraction

of Isospin mixing in the IAS

• Development of Isospin Non Conserving Shell

Model hamiltonian in the (sd − pf ) valence

space and numerous applications

• Improvement of MED and TED description

within a band

• Interpretation for b and c coefficients stagger-

ing

• support to forthcoming experimental studies

48Mn: Sexp = 2.7(9).10−3 , αexp = 1.4(5)%



Weak-interaction processes and physics beyond

the Standard Model

Superallowed β 0+ → 0+ as a test of fundamental interactions

• Large scale calculations for all emitters below

A ≤ 40 including nuclei in the vicinity of 40Ca

• Use of Isospin Non Conserving hamiltonians

and Woods-Saxon wave functions for untrun-

cated sd and pf calculations

• New approach of radii determination without

closure approximation

• Use of new effective interactions developped

in Strasbourg

• Lanczos Structure Function Method for δC

• New (sd − pf ) interaction

• Effective Fermi Operator

• HF wave functions

• New emitters such as 58Zn
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Weak-interaction processes and physics beyond

the Standard Model

Reliable nuclear matrix elements needed to plan and fully exploit

impressive experiments looking for neutrinoless ββ decay
• Matrix elements differences

between present calculations, factor 2-3

besides additionnal “quenching” ?

• 48Ca and 76Ge matrix elements

in larger configuration space increase / 30% ,

missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not

need additionnal “quenching”,

Ab-initio 48Ca matrix elements in progress

• 2νββ decay, µ-capture/ν-nucleus scattering

and double Gamow-Teller transitions

can give insight on 0νββ matrix elements
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Weak-interaction processes and physics beyond

the Standard Model

Reliable nuclear matrix elements needed to plan and fully exploit

impressive experiments looking for neutrinoless double-beta decay

• Matrix elements differences

between present calculations, factor 2-3

besides additionnal “quenching” ?

• 48Ca and 76Ge matrix elements

in larger configuration space increase / 30% ,

missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not

need additionnal “quenching”,

Ab-initio 48Ca matrix elements in progress

• 2νββ decay, µ-capture/ν-nucleus scattering

and double Gamow-Teller transitions

can give insight on 0νββ matrix elements

[T 0ν
1/2(0

+ → 0+)]−1 = G0ν |M
0ν |2〈mββ

ν 〉2

Renormalisation of the (ββ)2ν operator by
MBPT
Collaboration IPHC - INFN/Université de Naples
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Stellar rp and r-processes and nucleosynthesis

Proton capture reaction rates calculations

for rp process (X-ray bursts) or novae

NA〈σv〉 = 1.54 ∗ 1015(µT9)
−3/2ωγexp(−11.605Er

T9
)cm3.s−1.mol−1

• Strong impact reactions (Cybert et al. AAJ, 2016):

56
Ni(α, p)

59
Cu,

59
Cu(p, γ)

60
Zn,

61
Ga(p, γ)

62
Zn

• Theoretical determination of unknown quantities:

Resonance energies (with Isospin breaking)

Widths with respect to proton and gamma emission

• Several reactions in sd shell

pf shell nuclei around 40Ca

Thomas-Ehrman shift in sd shell

(α, γ), (α, p), (p, α) capture/emission modeling

22Mg(α, p)25Al and other reactions

• p − sd − pf valence space for non-natural parity states

Electron capture rates around 40Ca

35Ar (p, γ)36K



Stellar rp and r-processes and nucleosynthesis

Radiative Neutron Capture:

Theoretical Models and Applications

• SM can provide reliable spectroscopic factors and help testing

usual theoretical assumptions in cases no experimental data is

known → work in progress

• Spectroscopy of neutron-rich nuclei around 78Ni is still of in-

terest for nuclear models

• E1/M1 RSF and PSF can be microscopically obtained within

the SM

• Shell effects survive at higher excitation energies and are visi-

ble in M1 dipole strength functions

• M1 upbend has a significant impact on neutron capture cross

sections in exotic nuclei : X10

• develop/constraint/improve global microscopic models (HFB,

QRPA) on a SM basis for all kind of applications (astrophysics,

nuclear data, reactors etc ...)
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Theoretical Models and Applications

• SM can provide reliable spectroscopic factors and help testing

usual theoretical assumptions in cases no experimental data is

known → work in progress

• Spectroscopy of neutron-rich nuclei around 78Ni is still of in-

terest for nuclear models

• E1/M1 RSF and PSF can be microscopically obtained within

the SM

• Shell effects survive at higher excitation energies and are visi-

ble in M1 dipole strength functions
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Summary

SM Studies

• High predictive power, accurate and detailed information (structure near and far from

stability, nuclear and electroweak processes)

• success and robustness of the approach encourage further developments and

applications

• Potential powerful description of simultaneous low-lying phenonema but need of

precise dedicated local studies

• Intense support for future experimental programs and developments (but manpower

insufficient ...)

• Existing cross fertilizing collaborations in several domains: ab-initio studies, isospin

symmetry breaking, astrophysics, ββ decay ... and others to develop !



Ab-initio challenge

Phys. Rev. Lett. 117, 172501 (2016)



Ab-initio challenge

R. Taniuchi et al., NATURE 569, 53-58 (2019)



Ab-initio challenge

Phys. Rev. C100, 054327 (2019)



Stellar rp and r-processes and nucleosynthesis

Resonant Capture



Stellar rp and r-processes and nucleosynthesis

Direct Capture
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