Nuclear Shell Model: structure of exotic nuclei, weak processes and astrophysical issues

F. Nowacki, K. Sieja (IPHC), N. Smirnova (CENBG), P. Van Isacker (GANIL)

Prospectives nationales 2020-2030 Physique Nucléaire et Astrophysique nucléaire

New Frontiers for Shell Model calculations

Fundamental interactions and collectives excitations

- **.** Deformation, Superdeformation, Dipole/M1 resonances
	- Superfluidity, Symmetries
	- Isospin symmetry breaking

Weak processes

- β decay \iff fundamental interactions
- \bigcirc β β decay \Longleftrightarrow nature of neutrinos

 $[T_{1/2}^{0\nu}(0^+ \rightarrow 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m_\nu \rangle^2$

 OQ

• define effective interaction

$$
\bullet\;\mathcal{H}_{\text{eff}}\Psi_{\text{eff}}=\textit{E}\Psi_{\text{eff}}
$$

• build and diagonalize energy matrix

Nuclear structure far from stability

New magic numbers

Vanishing of shell closures

Astrophysics and nucleosynthesis

Shell Model: Giant Computations

exponential growth of basis dimensions:

$$
|\Phi_{\alpha}\rangle = \prod_{i=nljm\tau} a_i^{\dagger} |0\rangle = a_{i1}^{\dagger}...a_{iA}^{\dagger} |0\rangle
$$

$$
D \sim \left(\begin{array}{c} d_{\pi} \\ p \end{array}\right) \cdot \left(\begin{array}{c} d_{\nu} \\ n \end{array}\right)
$$

In *pf* shell : ⁵⁶Ni **1,087,455,228** In *pf*-*sdg* space : ⁷⁸Ni **210,046,691,518**

- Actual limits in giant diagonalizations: **0.2 10¹²** for ¹¹⁴Sn core excitations
- Largest matrices up to now contain up to ∼ **10¹⁴** non-zero matrix elements.
- This would require more than 1,000,000 CD-ROM's to store the information for a single matrix !
- They cannot be stored on hard disk and are computed on the fly.

[I](#page-3-0)DI[PH](#page-1-0)G[\(2](#page-4-0)[0](#page-5-0)[16\)](#page-0-0) ≡ DIRE OQ

Shell Model: Giant Computations

exponential growth of basis dimensions:

$$
|\Phi_{\alpha}\rangle = \prod_{i=nljm\tau} a_i^{\dagger} |0\rangle = a_{i1}^{\dagger}...a_{iA}^{\dagger} |0\rangle
$$

$$
D \sim \left(\begin{array}{c} d_{\pi} \\ p \end{array}\right) \cdot \left(\begin{array}{c} d_{\nu} \\ n \end{array}\right)
$$

In *pf* shell : ⁵⁶Ni **1,087,455,228** In *pf*-*sdg* space : ⁷⁸Ni **210,046,691,518**

- Actual limits in giant diagonalizations: **0.2 10¹²** for ¹¹⁴Sn core excitations
- Largest matrices up to now contain up to ∼ **10¹⁴** non-zero matrix elements.
- This would require more than 1,000,000 CD-ROM's to store the information for a single matrix !
- They cannot be stored on hard disk and are computed on the fly.

[I](#page-4-0)DI[PH](#page-1-0)G[\(2](#page-4-0)[0](#page-5-0)[16\)](#page-0-0) ≡ DIRE OQ

Shell Model: Giant Computations

exponential growth of basis dimensions:

$$
|\Phi_{\alpha}\rangle = \prod_{i=nljm\tau} a_i^{\dagger} |0\rangle = a_{i1}^{\dagger}...a_{iA}^{\dagger} |0\rangle
$$

$$
D \sim \left(\begin{array}{c} d_{\pi} \\ p \end{array}\right) \cdot \left(\begin{array}{c} d_{\nu} \\ n \end{array}\right)
$$

In *pf* shell : ⁵⁶Ni **1,087,455,228** In *pf*-*sdg* space : ⁷⁸Ni **210,046,691,518**

- Actual limits in giant diagonalizations: **0.2 10¹²** for ¹¹⁴Sn core excitations
- Largest matrices up to now contain up to ∼ **10¹⁴** non-zero matrix elements.
- This would require more than 1,000,000 CD-ROM's to store the information for a single matrix !
- They cannot be stored on hard disk and are computed on the fly.

[I](#page-5-0)[PH](#page-1-0)[C](#page-2-0)[\(2](#page-4-0)[0](#page-5-0)[16\)](#page-0-0) OQ

Structure and decay of exotic nuclei

• Nowadays, LSSM calculations in extended model spaces comprising a few oscillator shells to deal with the changing shell structure and the onset of deformation in very neutron-rich nuclei

• Development of accurate description of isospin-symmetry breaking using chargedependent hamiltonians

• Construction of fully microscopic interactions for valence-space calculations as a path towards regions where no experimental data are available

- Development of numerical techniques and state-of-the-art computations
- Search for additionnal guidelines and shortcuts using symmetry based approaches

PHYSICAL REVIEW C 100 054329 (2019).

Effective interactions in the sd shell

N. A. Smirnova^{*} CENBG (CNRS/D/2P3 - Université de Bordeaux), 33175 Gradepan cedex. France

Isospin symmetry breaking in the Shell-Model context

• Accurate description of Isospin violation and associated phenomena through development of Isospin Non Conserving Shell Model hamiltonians in extended valence spaces:

((*sd*), (*pf*), (*s*1/2*d*3/² *f*7/2*p*3/²) and beyond

• $\beta - p$ and $\beta - p\gamma$ decay studies and extraction of Isospin mixing in the IAS

- Development of Isospin Non Conserving Shell Model hamiltonian in the (*sd* − *pf*) valence space and numerous applications
- Improvement of MED and TED description within a band
- Interpretation for **b** and **c** coefficients staggering
- support to forthcoming experimental studies

Isospin symmetry breaking in the Shell-Model context

• Accurate description of Isospin violation and associated phenomena throuh development of Isospin Non Conserving Shell Model hamiltonians in extended valence spaces:

((*sd*), (*pf*), (*s*1/2*d*3/² *f*7/2*p*3/²) and beyond

- βp and $\beta p\gamma$ decay studies and extraction of Isospin mixing in the IAS
- Development of Isospin Non Conserving Shell Model hamiltonian in the (*sd* − *pf*) valence space and numerous applications
- Improvement of MED and TED description within a band
- Interpretation for b and c coefficients stagger-

ing

• support to forthcoming experimental studies

イロト (何) イミトイミン ニヨー

Superallowed β 0⁺ \rightarrow 0⁺ as a test of fundamental interactions

- Large scale calculations for all emitters below $A < 40$ including nuclei in the vicinity of 40 Ca
- Use of Isospin Non Conserving hamiltonians and Woods-Saxon wave functions for untruncated *sd* and *pf* calculations
- New approach of radii determination without closure approximation
- Use of new effective interactions developped in Strasbourg
- Lanczos Structure Function Method for δ_C
- New (*sd* − *pf*) interaction
- Effective Fermi Operator
- HF wave functions
- New emitters such as ⁵⁸Zn

$$
\mathcal{F}t = (1 + \delta_R)(1 + \delta_{NS} - \delta_C)ft
$$

$$
= \frac{K}{M_{F0}^2 G_F^2 |V_{ud}|^2 (1 + \Delta_R)}
$$

Superallowed β 0⁺ \rightarrow 0⁺ as a test of fundamental interactions

- Large scale calculations for all emitters below $A < 40$ including nuclei in the vicinity of 40 Ca
- Use of Isospin Non Conserving hamiltonian and Woods-Saxon wave functions for untruncated *sd* and *pf* calculations
- New approach of radii determination without closure approximation
- Use of new effective interactions developped in Strasbourg
- Lanczos Structure Function Method for δ_C
- New (*sd* − *pf*) interaction
- Effective Fermi Operator
- HF wave functions
- New emitters such as ⁵⁸Zn

Reliable nuclear matrix elements needed to plan and fully exploit impressive experiments looking for neutrinoless $\beta\beta$ decay • Matrix elements differences

between present calculations, factor 2-3 besides additionnal "quenching" ?

• ⁴⁸Ca and ⁷⁶Ge matrix elements in larger configuration space increase \lesssim 30%, missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not need additionnal "quenching", Ab-initio ⁴⁸Ca matrix elements in progress

• $2\nu\beta\beta$ decay, μ -capture/ ν -nucleus scattering and double Gamow-Teller transitions can give insight on $0\nu\beta\beta$ matrix elements

$$
[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G_{0\nu}|M^{0\nu}|^2|f(m_i, U_{ei}|^2
$$

イロト イ伊 トイヨ トイヨ トー

 OQ

 \equiv

Reliable nuclear matrix elements needed to plan and fully exploit impressive experiments looking for neutrinoless $\beta\beta$ decay • Matrix elements differences

between present calculations, factor 2-3 besides additionnal "quenching" ?

• ⁴⁸Ca and ⁷⁶Ge matrix elements in larger configuration space increase \lesssim 30%, missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not need additionnal "quenching", Ab-initio ⁴⁸Ca matrix elements in progress

• $2\nu\beta\beta$ decay, μ -capture/ ν -nucleus scattering and double Gamow-Teller transitions can give insight on $0\nu\beta\beta$ matrix elements

$$
[T^{0\nu}_{1/2}(0^+ \to 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m^{\beta \beta}_\nu \rangle^2
$$

イロト イ伊 トイヨ トイヨ トー OQ \equiv

Reliable nuclear matrix elements needed to plan and fully exploit impressive experiments looking for neutrinoless double-beta decay

• Matrix elements differences between present calculations, factor 2-3 besides additionnal "quenching" ?

• ⁴⁸Ca and ⁷⁶Ge matrix elements in larger configuration space increase \lesssim 30%. missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not need additionnal "quenching", Ab-initio ⁴⁸Ca matrix elements in progress

• $2\nu\beta\beta$ decay, μ -capture/ ν -nucleus scattering and double Gamow-Teller transitions can give insight on $0\nu\beta\beta$ matrix elements

$$
[T^{0\nu}_{1/2}(0^+ \to 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m^{\beta \beta}_\nu \rangle^2
$$

PHYSICAL REVIEW C 100 014316 (2019)

Renormalization of the Gamow-Teller operator within the realistic shell model

L. Coraggio,¹ L. De Angelis,¹ T. Fukui,¹ A. Gargano,¹ N. Itaco,^{2,1} and F. Nowacki^{3,4,2}

 000

Reliable nuclear matrix elements needed to plan and fully exploit impressive experiments looking for neutrinoless double-beta decay

• Matrix elements differences between present calculations, factor 2-3 besides additionnal "quenching" ?

• ⁴⁸Ca and ⁷⁶Ge matrix elements in larger configuration space increase $\leq 30\%$, missing correlations introduced in IBM, EDF

• First Ab-initio calculations of β decays do not need additionnal "quenching", Ab-initio ⁴⁸Ca matrix elements in progress

• $2\nu\beta\beta$ decay, μ -capture/ ν -nucleus scattering and double Gamow-Teller transitions can give insight on $0\nu\beta\beta$ matrix elements

$$
[T_{1/2}^{0\nu}(0^+ \to 0^+)]^{-1} = G_{0\nu} |M^{0\nu}|^2 \langle m_{\nu}^{\beta\beta} \rangle^2
$$

The calculation of the neutrinoless double- β decay matrix element within the realistic shell model

L. Coraesio.¹ A. Gareano.¹ N. Itaco.^{2, 1} R. Mancino.^{2, 1} and F. Nowacki^{3, 4, 2}

Collaboration [IPH](#page-12-0)[C - I](#page-14-0)[N](#page-12-0)[FN/](#page-13-0)[Un](#page-14-0)[ive](#page-0-0)[rsite](#page-24-0) [de](#page-0-0) [Na](#page-24-0)[ples](#page-0-0) ´

 $\Omega \cap \Omega$

Proton capture reaction rates calculations for rp process (X-ray bursts) or novae

$$
N_A \langle \sigma v \rangle = 1.54*10^{15} (\mu T_9)^{-3/2} \omega \gamma \exp(\frac{-11.605E_r}{T_9}) cm^3 . s^{-1}. mol^{-1}
$$

• Strong impact reactions (Cybert et al. AAJ, 2016):

⁵⁶ Ni(
$$
\alpha
$$
, p)⁵⁹ Cu,⁵⁹ Cu(p, γ)⁶⁰ Zn,⁶¹ Ga(p, γ)⁶² Zn

• Theoretical determination of unknown quantities:

Resonance energies (with Isospin breaking) Widths with respect to proton and gamma emission

• Several reactions in *sd* shell *pf* shell nuclei around ⁴⁰*Ca* Thomas-Ehrman shift in *sd* shell (α, γ) , (α, p) , (p, α) capture/emission modeling 22 *Mg*(α , p)²⁵ A *l* and other reactions

• *p* − *sd* − *pf* valence space for non-natural parity states Electron capture rates around ⁴⁰*Ca*

Radiative Neutron Capture: Theoretical Models and Applications

• SM can provide reliable spectroscopic factors and help testing usual theoretical assumptions in cases no experimental data is known \rightarrow work in progress

• Spectroscopy of neutron-rich nuclei around ⁷⁸Ni is still of interest for nuclear models

• *E*1/*M*1 RSF and PSF can be microscopically obtained within the SM

• Shell effects survive at higher excitation energies and are visible in M1 dipole strength functions

• M1 upbend has a significant impact on neutron capture cross sections in exotic nuclei : *X*10

• develop/constraint/improve global microscopic models (HFB, QRPA) on a SM basis for all kind of applications (astrophysics, nuclear data, reactors etc ...)

Radiative Neutron Capture: Theoretical Models and Applications

- SM can provide reliable spectroscopic factors and help testing usual theoretical assumptions in cases no experimental data is known \rightarrow work in progress
- Spectroscopy of neutron-rich nuclei around 78 Ni is still of interest for nuclear models
- *E*1/*M*1 RSF and PSF can be microscopically obtained within the SM
- Shell effects survive at higher excitation energies and are visible in M1 dipole strength functions
- M1 upbend has a significant impact on neutron capture cross sections in exotic nuclei : *X*10
- develop/constraint/improve global microscopic models (HFB, QRPA) on a SM basis for all kind of applications (astrophysics, nuclear data, reactors etc ...)

 $\mathcal{A} \otimes \mathcal{A} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A}$

 \equiv

Radiative Neutron Capture: Theoretical Models and Applications

• SM can provide reliable spectroscopic factors and help testing usual theoretical assumptions in cases no experimental data is known \rightarrow work in progress

• Spectroscopy of neutron-rich nuclei around 78 Ni is still of interest for nuclear models

• *E*1/*M*1 RSF and PSF can be microscopically obtained within the SM

• Shell effects survive at higher excitation energies and are visible in M1 dipole strength functions

• *M*1 upbend has a significant impact on neutron capture cross sections in exotic nuclei : *X*10

• develop/constraint/improve global microscopic models (HFB, QRPA) on a SM basis for all kind of applications (astrophysics, nuclear data, reactors etc ...)

 $\left\{ \begin{array}{ccc} \pm & \pm & \pm \end{array} \right.$ OQ

SM Studies

• High predictive power, accurate and detailed information (structure near and far from stability, nuclear and electroweak processes)

• success and robustness of the approach encourage further developments and applications

• Potential powerful description of simultaneous low-lying phenonema but need of precise dedicated local studies

• Intense support for future experimental programs and developments (but manpower insufficient ...)

• Existing cross fertilizing collaborations in several domains: ab-initio studies, isospin symmetry breaking, astrophysics, $\beta\beta$ decay ... and others to develop !

Ab-initio challenge

FIG. 2. Correlation between the energies of the $2₁⁺$ excited state in ${}^{48}Ca$ and ${}^{78}Ni$, obtained from the interactions NNLO_{spt} (circle), "2.0/2.0 (PWA)" (square), "2.0/2.0 (EM)" (diamond), "2.2/2.0 (EM)" (triangle up), and "1.8/2.0 (EM)" (triangle down). The error bars estimate uncertainties from enlarging the model space from $N = 12$ to $N = 14$. The thin horizontal line marks the known energy of the 2^+_1 state in ⁴⁸Ca.

Phys. Rev. Lett. 117, 172501 (2016)

FIG. 3. Convergence of the first 2^+_1 excited state of ⁴⁸Ca and ⁷⁸Ni with increasing model-space size and compared to the data for the interaction $1.8/2.0$ (EM) of Ref. [33].

 $\mathcal{A} \subseteq \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B}$

Ab-initio challenge

R. Taniuchi et al., NATURE **569**, 53-58 (2019)

Ab-initio challenge

 $\mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{A} \otimes \mathcal{B} \rightarrow \mathcal{B}$ \equiv $\begin{picture}(160,170) \put(0,0){\line(1,0){10}} \put(10,0){\line(1,0){10}} \put(10,0){\line$

Resonant Capture

$$
\sigma_{(n,\gamma)}^{\mu\nu}(E_i,n)=\frac{\pi\hbar^2}{2M_{i,n}E_{i,n}}\frac{1}{(2J_i^{\mu}+1)(2J_n+1)}\sum_{J,\pi}(2J+1)\frac{T_n^{\mu}T_{\gamma}^{\nu}}{T_n^{\mu}+T_{\gamma}^{\nu}}
$$

for $E_n \sim \text{keV}$ $T_n^{\mu} \gg T_{\gamma}^{\nu} \longrightarrow \sigma^{\mu \nu} \sim T_{\gamma}^{\nu}$
 $E_{i,n}, M_{i,n}$ - center-of-mass energy, reduced mass of the system $J_n = 1/2$ -neutron spin $T_n^{\mu} = T_n(E, J, \pi; E_i^{\mu}, J_i^{\mu}, \pi_i^{\mu})$ $T_{\gamma}^{\nu} = T_{\gamma}(E, J, \pi; E_m^{\nu}, J_m^{\nu}, \pi_m^{\nu})$ - transmission coefficients

For a given multipolarity $T_{XL}(\vec{E},J,\pi,\vec{E}^{\nu},J^{\nu},\pi^{\nu})=2\pi E_{\gamma}^{2L+1}f_{XL}(\vec{E},E_{\gamma})$ For Test, using SM, the key ingredients of Hauser-Feshbach calculations:

- \bullet description of γ emission spectra
- **Brink-Axel hypothesis**

イロト イ押ト イヨト イヨト

 \equiv

Direct Capture

Xi. Yu and S. Goriely, Phys. Rev. C86 (2012) 045801

$$
\sigma^{DC}(E) = \sum_{f=0}^{x} S_f \sigma_{dis}(E)
$$

+ $\langle S \rangle \int_{E_x}^{S_n} \sum_{J_f, \pi_f} \rho(E_f, J_f, \pi_f) \times \sigma_i^{cont} dE_f$

If no experimental data available:

 \bullet use combinatorial model for the level density with $\langle S \rangle = 0.5$

EXThe key ingredients: low-energy levels and spectroscopic factors

«validate theoretical approximations (HFB) in exotic nuclei using SM predictions

> イロト イ団 トイミト イモト 一毛 OQ

Direct Capture

Xi. Yu and S. Goriely, Phys. Rev. C86 (2012) 045801

$$
\sigma^{DC}(E) = \sum_{f=0}^{x} S_f \sigma_{dis}(E)
$$

+ $\langle S \rangle \int_{E_x}^{S_n} \sum_{J_f, \pi_f} \rho(E_f, J_f, \pi_f) \times \sigma_i^{cont} dE_f$

If no experimental data available:

 \bullet use combinatorial model for the level density with $\langle S \rangle = 0.5$

EXThe key ingredients: low-energy levels and spectroscopic factors

«validate theoretical approximations (HFB) in exotic nuclei using SM predictions

> イロト イ団 トイミト イモト 一毛 OQ