All Hadronic $t\bar{t}H(b\bar{b})$ Analysis with the ATLAS Detector

Giovanni Bartolini

¹Aix-Marseille-Université, CPPM, Marseille, France

December 17, 2019

Outline

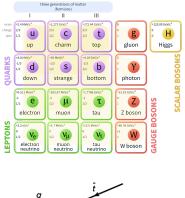
Introduction

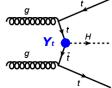
- Standard Model and Top Yukawa Coupling
- The ATLAS Experiment at LHC

D-jet Trigger Calibration

3 All Hadronic $t\bar{t}H(b\bar{b})$ Analysis

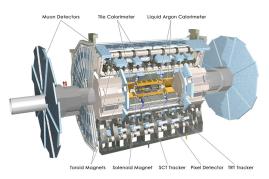
- TRF_{MJ}
- Multi-Variate Analysis
- Fit preliminary results

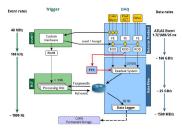

4 Conclusion


Introduction

Standard Model and Top Yukawa Coupling

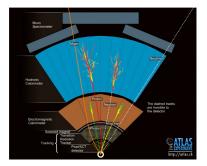
- The **Standard Model** (SM) of Particle Physics is a gauge theory that classifies all known elementary particle and describes Strong, Weak and Electromagnetic interaction forces
- Very successful theory, still many shortcomings: inclusion of gravity, neutrino masses, evidence of dark matter, ...
- Discovery of **Higgs** boson in 2012 completed the set of predicted elementary particle and started an effort on the precise measure of its properties
- The top quark is the heaviest elementary particle
 - ▶ has the highest Yukawa coupling: Y_t ~1
- Anomalous values for *Y_t* could hint for *Beyond the Standard Model* (BSM) Physics
- Associated production $(t\bar{t}H)$ only way to directly measure Y_t

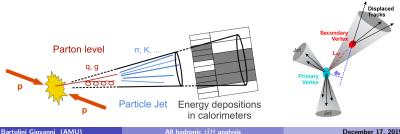

Standard Model of Elementary Particles



The ATLAS experiment at LHC

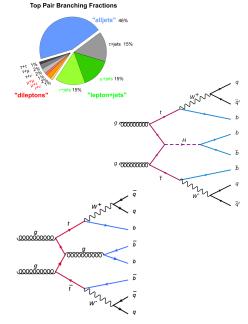
- The ATLAS detector is placed in one of the 4 interaction point of the Large Hadron Collider (LHC) in CERN experimental area and collects data from pp collisions at $\sqrt{s} = 13$ TeV
- $\bullet\,$ The LHC provides ${\sim}10^{34}~{\rm cm}^{-2}~{\rm s}^{-1}$ instantaneus luminosity
 - more than 40 million collision per second
 - trigger system to collect only interesting events (few hundreds per second)



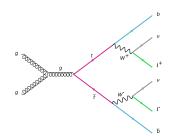


Particle detection with ATLAS

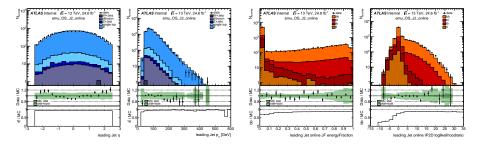
- Electrons: Energy deposition in calorimeter and charged track in ID
- Photons: Energy deposition in calorimeter, no track in ID
- Muons: Combined track in ID and MS
- MET: negative vectorial sum of selected physics objects and the soft term
- JETS: Quarks and gluons that are produced from a collision will *hadronize* producing a collimated flow of hadronic particles, that is reconstructed using anti-*k*_t algorithm



• **BJET**: *b*-hadrons travel few hundreds μ m before decay, ATLAS has impact parameter track resolution of ~ 10 μ m: can reconstruct the Secondary Vertex (SV) to identify *b*-jet

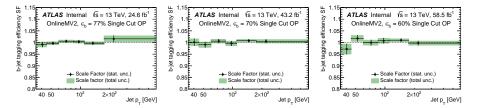

$t\bar{t}H$ Production in Fully Hadronic Final State

- $t\bar{t}H$ process has many accessible final states: $\gamma\gamma$, multi-lepton, lepton+jets, all hadronic
- ATLAS first $t\bar{t}H$ observation using Run 1 and Run 2 data published last year
 - with observed(expected) significance of 6.3(5.1)
- All hadronic has the largest brancing ratio:
 - ▶ \sim 33% of total $t\bar{t}H$ production
- Ideal for differential analysis
 - explore the CP nature of Y_t
- Challenging experimental signature:
 - 8 quarks, 4 b-quarks
 - Large QCD multi-jet background
 - irreducible t t + b b background



*b***-jet Trigger Calibration**

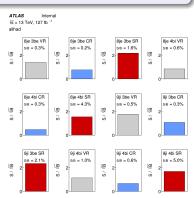
b-jet Trigger Calibration



- b-tagging crucial to reduce multi-jet background
 - both at trigger level and at reconstruction level
 - since 2016 trigger level b-tagging use same algorithm as offline
- *b*-tagging efficiency is calibrated in $t\bar{t}$ dilepton events
 - sample with high purity of b-jets
- Event selection:
 - high p_T eµ with opposite charge
 - exactly 2 high p_T jets
- likelihood based method to extract *b*-tagging efficiency

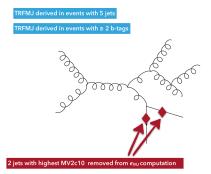
b-jet Trigger Calibration

- b-tagging efficiency is extracted using a likelihood based method
- Combined tagger: AND combination between online and offline tagger
 - P_f(comb) = P_f(trig AND tag) = P_f(trig|tag)P_f(tag)
 - $\blacktriangleright P_f(\overline{comb}) = P_f(\overline{trig} \text{ OR } \overline{tag}) = (1 P_f(trig|tag)P_f(tag))$
- $P_f(tag)$ is given by the offline calibration
- P_f(trig|tag) is evaluated by calibrating the online tagger in events with all jets tagged by the
 offline tagger
- Results obtained for full Run2
 - on the way to be available for full ATLAS collaboration

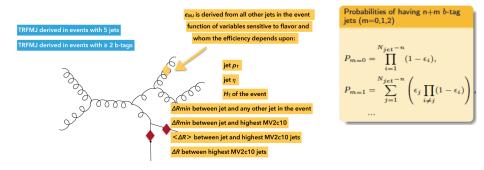


All Hadronic $t\bar{t}H(b\bar{b})$ Analysis

$t\bar{t}H(b\bar{b})$ Analysis Overview

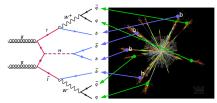

Preselection requirements

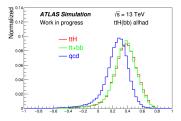
- *b*-jet trigger requiring \geq 2 *b*-jet + \geq 2 additional jets
- Lepton veto for orthogonality with other channels
- \geq 5 high p_T jets
- \geq 2 jets *b*-tagged by **combined** online+offline *b*-tagging
- Categorization in jet and *b*-tagged jet multiplicity
 - 4 regions considered
 - ▶ 8 or ≥9 jets
 - ▶ 3 or ≥4 *b*-jets
- Signal and background modeling
 - ttH signal: Powheg+Pythia8
 - tī: Powheg+Pythia8
 - single top (Wt): Powheg+Pythia8
 - tīV: aMC@NLO+Pythia8
 - QCD multi-jet: estimated with data-driven method TRF_{MJ}
 - ★ TRF_{MJ} is derived in region with exactly 5 jets and ≥2 combined b-tagged jets


Tag-Rate-Function multi-jet: TRF_{MJ}

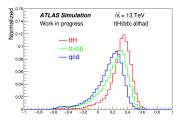
- TRF_{MJ} method is used to estimate the number of events with (\geq)k *b*-tagged jets from a sample with \geq n (n \leq k) *b*-tagged jets
- The probability of tagging a QCD jet, ϵ_{MJ} , is derived as a function of variables sensitive to heavy flavor production and *b*-tagging efficiency

Tag-Rate-Function multi-jet: TRF_{MJ}

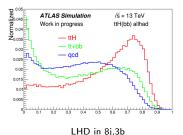

- TRF_{MJ} method is used to estimate the number of events with $(\geq)k$ *b*-tagged jets from a sample with $\geq n$ (n $\leq k$) *b*-tagged jets
- The probability of tagging a QCD jet, ϵ_{MJ} , is derived as a function of variables sensitive to heavy flavor production and *b*-tagging efficiency

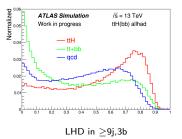

2 jets with highest MV2c10 removed from ϵ_{MJ} computation

Reconstruction BDT


- Goal: find the best association between jets reconstructed in the detector and the final state partons
 - ▶ applied in events with ≥8 jets and ≥3 b-tag
 - large mutliplicites \rightarrow large combinatorics: from 36 up to thousands of possible ways to reconstruct the $t\bar{t}H$ system

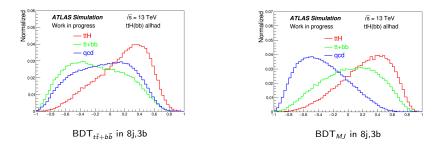
- 2 different BDTs using reconstructed resonances and angular correlations between jets
 - recoBDT: tries to reconstruct only $t\bar{t}$ system
 - \rightarrow no bias on the Higgs candidate mass
 - recoBDT_withHiggs: full ttH system reconstruction
 - \rightarrow higher reconstruction efficiency

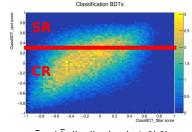

max recoBDT score in 9j,4b



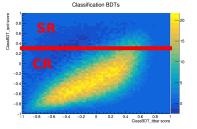
max recoBDT_withHiggs score in 9j,4b

Likelihood Discriminant Method


- Runs on all jet permutations to evaluate the event probability to be identified as signal (tt
 *t*H) or background (tt
 t bb)
- \bullet Perform a weighted average for the sig probability P_{sig} and bkg probability P_{bkg} of all permutations
- Final disciminant is obtained by the ratio: $LD = \frac{P_{sig}}{P_{sig} + P_{bkg}}$

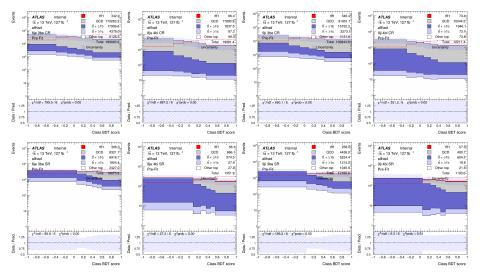

2D Classification BDT

- Goal: perform signal vs background discrimination
- Combines reconstruction results from previous step with global event kinematics
- Trained two separate BDTs, optimized respectively against $t\bar{t} + b\bar{b}$ and QCD multi-jet backgrounds
- Variables optimization performed separately in each signal region with a recursive method
- Current use of the two BDTs:
 - Split each multiplicity region into control and signal regions with a cut at 0.3 on BDT_{MJ}
 - Perform final fit in BDT_{tt+bb}



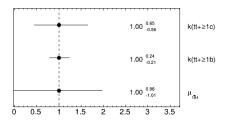
2D Classification BDT

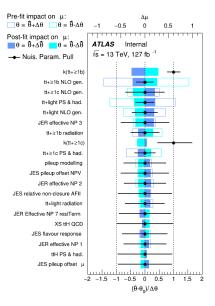
Classification BDTs 0.35 ClassBDT_qod sc 0.8 0.6 0.3 0.25 0.2 0.2 -0.2 0.15 -0.4 -0.6 0.05 -0.8 -1-1 -0.8 -0.6 -0.4 0.2 ClassBDT ttbar score $t\bar{t}H$ distribution in \geq 9j,3b


 $t\overline{t} + b\overline{b}$ distribution in \geq 9j,3b

QCD multi-jet distribution in in \geq 9j,3b

• Cut at 0.3 on BDT_{MJ} is removing most of the QCD multi-jet background while keeping most of the signal

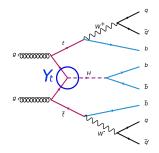

Run2 fit setup: $BDT_{t\bar{t}+b\bar{b}}$ Plots CR (top) and SR(bottom)



- In both CR and SR the fit is performed on the $BDT_{t\bar{t}+b\bar{b}}$
- Only simulation is used: obtain expected results before looking at data

Run2 Fit Preliminary Results

- Obtained expected signal strenght $\mu_{t\bar{t}H} = 1.00^{+0.98}_{-1.01}$
- Systematics are ranked based on their impact on the signal strenght $\mu_{t\bar{t}H}$
- Leading systematics from modeling of $t\bar{t}$ backgounds
- TRF_{MJ} systematics for QCD normalinzation highly constrained by the fit
 - currently low ranking
 - shape uncertainty may become leading one



19 / 22

Conclusion

Conclusion

- $t\bar{t}H$ production only way to directly measure the top-Higgs coupling Y_t
 - can be an important window for New Physics
- Fully hadronic $t\bar{t}H(b\bar{b})$ analysis:
 - Large statistic available and event fully reconstructable
 - but dominated by large QCD multi-jet background
- My contribution to improve the analysis:
 - Calibration of trigger b-tagging efficiency
 - ★ performed for full Run2, results on the way to be available for full ATLAS collaboration
 - Implemented a 2 steps strategy for MVA based signal/background discrimination
 - * Reconstruction step to resolve combinatorics: reconstruction BDT to find best combination and LHD to evaluate signal probability
 - Classification step with two separate optimizations: BDT_{MJ} for QCD multi-jet and BDT_{tt} for tt background discrimination
- Obtained preliminary results for full Run2 Analysis
 - Expected signal strenght $\mu_{t\bar{t}H} = 1.00^{+0.98}_{-1.01}$
 - Leading systematics from modeling of $t\bar{t}$ backgounds
 - ★ but still need to add shape uncertainties to TRF_{MJ} predictions
- Next: look at p_T differential $\sigma_{t\bar{t}H}$ where this channel can give an important contribution

END

BACKUPS

Classification BDT versus $t\bar{t} + b\bar{b}$

- 8 jets 3 btag
 - LHD_Discriminant_merged
 - RecoBDT_withH_maxscore
 - Mass
 - M
 - DeltaRavgbb
 - St
 - HighestEt
 - Mbb_minDeltaR
- \geq 9 jets 3 btag
 - LHD_Discriminant_allmatched
 - RecoBDT_withH_maxscore
 - Mass
 - M
 - DeltaRavgbb
 - St
 - HighestEt
 - Mbb_minDeltaR
 - Htjets

- 8 jets ≥4 btag
 - LHD_Discriminant_merged
 - RecoBDT_withH_maxscore
 - Mass
 - M
 - RecoBDT_ttbar_best_Higgs_mass
 - DeltaRavgbb
 - HighestEt
 - Mbb_minDeltaR
 - N30Higgs
- \geq 9 jets \geq 4 btag
 - LHD_Discriminant_allmatched
 - RecoBDT_withH_maxscore
 - Mass
 - M
 - DeltaRavgbb
 - Mbb_minDeltaR
 - RecoBDT_ttbar_best_Higgs_mass
 - Deltaetajjmax
 - TransverseMass

Classification BDT versus QCD

8 jets 3 btag

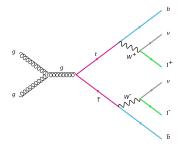
- RecoBDT_ttbar_maxscore
- LHD_log10ProbSig_merged
- CentralityMass
- AverageEtSinThetaStarNotTwoHighestEt
- Ht5
- MbbmaxPt
- MinDR
- TwobjetsMass
- TransverseMass
- MbbmaxM
- Drbb_MaxPt
- MbjmaxPt
- Deltaetajjmax

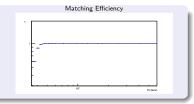
• \geq 9 jets 3 btag

- RecoBDT_ttbar_maxscore
- LHD_log10ProbSig_merged
- CentralityMass
- AverageÉtSinThetaStarNotTwoHighestEt
- Ht5
- MbbmaxPt
- MinDR
- TwobjetsMass
- TransverseMass
- MbbmaxM
- MbjmaxPt
- MbjmaxM
- MjjmaxM

● 8 jets ≥4 btag

- RecoBDT_ttbar_maxscore
- LHD_log10ProbSig_merged
- CentralityMass
- AverageEtSinThetaStarNotTwoHighestEt
- Ht5
- MbbmaxPt
- MinDR
- TwobjetsMass
- MbbmaxM
- MbjmaxPt
- St
- Htjets
- Aplanarity
- \geq 9 jets \geq 4 btag
 - RecoBDT_ttbar_maxscore
 - LHD_log10ProbSig_merged
 - CentralityMass
 - AverageEtSinThetaStarNotTwoHighestEt
 - Ht5
 - MbbmaxPt
 - MinDR
 - TwobjetsMass
 - MbbmaxM
 - MbjmaxPt
 - N30Higgs
 - St
 - Aplanarity
 - Njet40
 - MjjmaxM


Run2 fit setup: Modeling and Systematics


- *ttH* signal: Powheg+Pythia8
- Backgrounds:
 - ▶ *tī*: Powheg+Pythia8
 - single top (Wt): Powheg+Pythia8
 - tīV: aMC@NLO+Pythia8
 - QCD multi-jet: TRF_{MJ} data-driven
- Instrumental systematics:
 - Luminosity, pileup modelling, JVT, JES, JER, flavour tagging on all MC
- Theoretical systematics:
 - cross section of $t\overline{t} + c$ and $t\overline{t} + b$ used as normalization factors
 - Uncertainties of cross section of MC backgrounds
 - Radiation: tTH, tT
 - Generator: aMC@NLO+Pythia8 ttH, tt and single-top
 - PS+had: Powheg+Herwig7 ttH, tt and single-top
- TRF_{MJ} unclosure systematics
 - Uncorrelated across jet and b-tag multiplicity
 - Normalization only, temporary set to 50%
 - Shape systematic has to be added

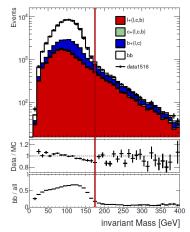
$t\bar{t}$ dilepton PDF Method: Event Selection

• Event selection:

- activate one b-offperf trigger
- exactly 2 tight leptons with p_T > 28 GeV and opposite charge
- exactly 2 anti-kt4 calo jets with $p_T > 35$ GeV and $\eta < 2.5$
- ▶ eµ channel
- m_{li} cuts
- both jets matched

Geometrical Matching

associate offline AntiKt4EMTopo jets to the corresponding online SplitJet jets with the geometrical requirement $\Delta R < 0.2$


m_{lj} cuts

 Idea: improve bb-purity by finding Jet + lepton combinations which corresponds to the top quarks.

- For *b*-Jets the invariant mass of the combination should be smaller then the top mass.
- The combination we found which seems to be the most promising in reducing background is the one which minimizes the sum of the squared invariant mass of both possible "Ij-combinations" in the event.

* slide from Julian Constantin Schmoeckel

lj-Combination, invariant Mass

– Veto events with one $m_{
m li}$ > 175GeV (pprox top-mass), or constrain flavor fractions

$t\bar{t}$ dilepton PDF Method: Likelihood Fit

* slide from Julian Constantin Schmoeckel

$$\mathcal{L}_{\rm E}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}, w_{\rm I}, w_{\rm 2} | \mathcal{P}_{\rm b}(w | \boldsymbol{p}_{\rm T})) = [f_{\rm bb}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}) \mathcal{P}_{\rm b}(w_{\rm 1} | \boldsymbol{p}_{\rm T,1}) \mathcal{P}_{\rm b}(w_{\rm 2} | \boldsymbol{p}_{\rm T,2}) \\ + f_{\rm bl}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}) \mathcal{P}_{\rm b}(w_{\rm 1} | \boldsymbol{p}_{\rm T,1}) \mathcal{P}_{\rm l}(w_{\rm 2} | \boldsymbol{p}_{\rm T,2}) \\ + f_{\rm bb}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}) \mathcal{P}_{\rm l}(w_{\rm 1} | \boldsymbol{p}_{\rm T,1}) \mathcal{P}_{\rm b}(w_{\rm 2} | \boldsymbol{p}_{\rm T,2}) \\ + f_{\rm l}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}) \mathcal{P}_{\rm l}(w_{\rm 1} | \boldsymbol{p}_{\rm T,1}) \mathcal{P}_{\rm b}(w_{\rm 2} | \boldsymbol{p}_{\rm T,2}) \\ + f_{\rm l}(\boldsymbol{p}_{\rm T,1}, \boldsymbol{p}_{\rm T,2}) \mathcal{P}_{\rm l}(w_{\rm 1} | \boldsymbol{p}_{\rm T,1}) \mathcal{P}_{\rm l}(w_{\rm 2} | \boldsymbol{p}_{\rm T,2})]$$

 $\begin{array}{l} f_{f_1,f_2}(\rho_{T,1},\rho_{T,2}) = \mbox{fraction of flavour combination } [f_1,f_2]. \mbox{ (Extracted from Simulation)} \\ \mathcal{P}_f(w_1|\rho_{T,1}) = \mbox{pdf for a b-tagging weight } w \mbox{ of jet with flavour f and a given } \rho T, 1. \end{array}$

$$\mathcal{L}(\mathcal{P}_{\mathrm{b}}(w|\boldsymbol{p}_{\mathrm{T}})) = \prod_{\mathrm{data}} \mathcal{L}_{\mathrm{E}}(\mathrm{data}|\mathcal{P}_{\mathrm{b}}(w|\boldsymbol{p}_{\mathrm{T}}))$$
(2)

$$\epsilon_{\rm b}(p_{\rm T}) = \int_{w_{\rm cut}}^{\infty} dw' \mathcal{P}_{\rm b}(w'|p_{\rm T})$$
(3)