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Motivations ... the Bayesian inference
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Motivations ... a bit of theory
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Motivations ... a bit of theory

bin averaged "I rispectrum
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Using Monte Carlo (later introduced) on a totaly defined set :
e boxofvolume LxL.xL

e analytical P.D.F. (log-normal)
e theoretical Power spectrum

T(k;, k;) ~ 8ci(4cs + 3cic3)P>(k;)
+24(3cics + 4eicscy + 12¢7c,¢) PO (k) PA(k;)

+144cic; PP (0)PA(k;)

¢» some specifics
Hermite polynomials coefficients
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» Chalenging the accuracy of galaxy surveys implies to develop strong statistical methods in
LSS data analysis to constrain the large variety of cosmological models. The obsevational
chain must be confroled and unbiased

Need for reliable covariance matrix of a « key » observable

» What kind of observable 2 Need for a direct observable that does not suffer from any fiducial

bias :
Angular power spectrum Cy
CAr, 1) = (47r)zro dkk?P(k)j (kr)j(kr')
0
analytically?
How

to predict Ci; ?



» Chalenging the accuracy of galaxy surveys implies to develop strong statistical methods in
LSS data analysis to constrain the large variety of cosmological models. The obsevational
chain must be confroled and unbiased

Need for reliable covariance matrix of a « key » observable

» What kind of observable 2 Need for a direct observable that does not suffer from any fiducial
bias :
Angular power spectrum Cy

oo

C (1) = (47:)2[ AK2 POk (k'
0

analy€ically?

Hlow Nbody sim?
to predict G 2 numerically? —



» Chalenging the accuracy of galaxy surveys implies to develop strong statistical methods in
LSS data analysis to constrain the large variety of cosmological models. The obsevational
chain must be confroled and unbiased

Need for reliable covariance matrix of a « key » observable

» What kind of observable 2 Need for a direct observable that does not suffer from any fiducial

bias :
Angular power spectrum Cy
Cuir,r) = (47:)2[ Ak POy (ki (k'
0
analy€ically?
Hlow : Nbod{ sim?
to predict Cij numefically? —

(" )

semi-analytically — | Monte Carlo

\_ W,




Fast Monte Carlo
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Theoretical Power spectrum P(k)
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Generate a galaxy catalogue
o Step 1: generate a non gaussian field in a box
with a given PDF and P(k,z)

e Step 2: Poisson sample it to get a shapshot

e Step 3: reconstruct the lightcone
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Generate a NG field with arbitrary PDF and P(k)
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Chose a theoretical P(k,2z)

chose a target PDF and find the transformation L (ref)
to go from a G field nu to the NG field delta

Given L, how 2pcf trandforms? —> H (ref)
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Ns = 256, ky ~ 0.67hMpc 1

Fig. 6: Averaged 3D power spectrum compared to the expected
3D power spectrum, for 1000 realisations of the density field.
The shell-averaged monopoles of this residuals in shells of width
k| — kr/2 < |K| < |[K| + k/2 were then computed. The result is
presented as percentage with error bars. The setting used is a

N; = 512, ky ~ 1.34hMpc ! sampling number per side of 256 in the top panel and 512 for
the other, all in a box of size L = 1200A~'Mpc at redshift z = 0.
Both results are computed up to the Nyquist frequency.

’N

measured 1p P.D.F. in the case
of a target log-normal distribution

(analytical)



Fig. 5. Measured diagonal of the covariance matrix for 7375 power
spectra realizations of the density field using the described method
(black curve). The other curves represent their predictions taking into
account the gaussian part alone (G) or by adding some non gaussian
contributions of equation (18). For example in (1-NG) one keeps only
the term in P3(k;) in the trispectrum development presented in equation
(20) while in (3-NG) we keep all of them.
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Fig. 6. Off diagonal elements of the covariance matrix estimated with
N = 7375 realisations, showing the dependance of the C;; with respect ]
to k; at various fixed k; labeled on the right of the panel. The error bars 00
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are obtained assuming that the covariance coeflicients follow a Wishart o
distribution, i.e. V[CU] = (Clzj + Ciiij)/(N - 1). ) \ 0.241
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Reconstructing the light cone

® Choose Zmin,Zmax fOr your catalogue and generate Nsy NG fields

e Poisson sample them to get snapshots at these intermediate redshifts

® place ourself at the center of each box

e select shells in snapshots that correspond to the comoving volume of the redhift interval
of the snapshot

® glue all shells to reconstruct the lightcone

anap = Zmin

anap = Zmin +dz

ZSI’lClp = Zmax
AEEEEEEEEEEEEEEEEEEE



Measured using Healpix (ref)
Predicted using AngPow (ref)
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Fig. 8. Top panel : Thousand averaged C,’s for simulated light cones
using the shell-method with error bars (red curve) and corresponding
prediction (dashed black curve). We simulate here a lightcone between
redshifts 0.2 and 0.3 in a sampling N; = 512 and a number of shells
N = 250 to ensure a sufficient level of continuity in the density field.
Center panel : relative deviation in percent of the averaged C,’s from
prediction with error bars in red.
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Fig. 13. Top : Measured diagonal of the covariance matrix (blue
curve) over N = 10000 realisations of different light cones. The red
curve represent the associated prediction in the case of a gaussian field
with errors computed using equation 17. Here we keep the SN effect
in the measures and include it in the prediction. Bottom : Relative
difference 1n percent following the same color code.




Off-diag terms

I
Fig. 13. The 300 first elements measured of the off-diagonal part of
the covariance matrix over n = 10000 realisations of light cone (black
dots) with gaussian errors (in red) computed using V[CiGj] = (lefz +
C ff C fj) /(n—1). The elements are labeled by the index i and are ordered

column by column of the lower half of the matrices without passing by
the diagonal.




» Conclusion

e General code to simulate any universe in a power spectrum oriented analysis
e Fast method for accurate P(k) and Cf’s

e Covariance matrix prediction

—> Baratta, Bel, Plasczcynski, Ealet arXiv:1906.09042
AA/2019/36163

» Next developpements

e RSD in next analysis

e Comparison with Nbody codes (DEMNUnNI with Sylvain Gouyou Beauchamps)
 Adaptation of FFT's in curved manifold

e Public code

e Surveys forcasts


https://arxiv.org/abs/1906.09042

