
Solving Global Optimisation Problems

Johan Bl̊abäck

Università di Roma
“Tor Vergata”

Loosely based on techniques used in:

1912.XXXXX
with: Iosif Bena, Mariana Graña, Severin Lüst

1810.11365, 1310.8300, 1301.7073
with: Ulf Danielsson, Giuseppe Dibitetto

1312.5328
with: Diederik Roest, Ivonne Zavala

https://gitlab.com/johanbluecreek/pres-solving_global

@ de Sitter constructions in String Theory / IPhT CEA/Saclay
2019-12-11

https://gitlab.com/johanbluecreek/pres-solving_global

What is an “optimisation problem”?

Given a function
fitness:Rn 7→ R , (1)

we want to find optima (minima) to this function.1

If you have gradients, are satisfied with local optima there are a number of
algorithms that given a starting position x returns the closest optima x′.

What can you do if you are looking for a global optima?

What if you have no gradients or even discontinuities?

1As physicists we may call this function a scalar potential in other contexts it is called a cost-function.

The following are example optimisation problems we have.

de Sitter optimisation problem

Solve equations of motion

Positive potential

Positive moduli masses

Weak coupling, large volume

Other hierarchies

Quintessence optimisation problem

Keeping potential positive

Minimise ε := 1
2

|DV |2
V 2

Minimise η := min(eigval(DDV))/|V |
Other wishes

Which we are not always able to approach analytically.

One CS subject that attack these problems is evolutionary computing2

Computer science ⊃ artificial intelligence ⊃ evolutionary computing

Evolutionary computing is population based and sometimes incorporates the
following evolutionary operations

Mutation
Perturb candidates slightly

Crossover
Have two or more candidates interact and exchange “genetic data”

Selection
Have some selection method for singling out the candidates with better fitness

In our example optimisation problems our candidates are something like

[fluxes . . . ,moduli . . .] (2)

2Generally distinct from “machine learning”.

How would you implement one?

Wikipedia3 gives us a list

Ant colony optimization Artificial immune systems
Artificial life (also see digital organism) Cultural algorithms
Differential evolution Dual-phase evolution
Estimation of distribution algorithms Evolutionary algorithms
Evolutionary programming Evolution strategy
Gene expression programming Genetic algorithm4

Genetic programming Grammatical evolution
Learnable evolution model Learning classifier systems
Memetic algorithms Neuroevolution
Particle swarm optimization Synergistic Fibroblast Optimization
Self-organization Swarm intelligence

Lets select differential evolution.

3https://en.wikipedia.org/wiki/Evolutionary_computation
41907.10072: Cole, Schachner, Shiu

Differential Evolution

Mutation

Select a candidate, x, and one random pair of other candidates: y and z. The
candidate x is mutated as

x′ = x+ F (y − z) ; F > 0 (3)

Crossover

Crossover selects some entries of x′ instead of x, e.g. randomly, to form x′′

x′′i = x′i if rand() < Cr else xi ; 0 < Cr < 1 (4)

Selection

Then x or x′′ is selected for the next generation via e.g. a greedy choice

x′′ if fitness(x′′) < fitness(x) else x (5)

DE/rand/1/bin

Now you could implement this yourselves. But you don’t have to.

BlackBoxOptim.jl5 (BBO) is an implementation in the Julia programming
language.6

A number of global optimisation algorithms are implemented in BBO:

Natural Evolution Sampling 3
Differential Evolution Optimizers 5
Generating Set Search 2
Resampling Memetic Search 2
Stochastic Approximation 1
Random Search 1

5Robert Feldt, https://github.com/robertfeldt/BlackBoxOptim.jl
61411.1607: Bezanson, Edelman, Karpinski, Shah

https://github.com/robertfeldt/BlackBoxOptim.jl

Basic usage:

bboptimize(fitness; MaxTime = [time], PopulationSize = [size],

SearchSpace = [space], ...)

Initialises a population randomly distributed, and applies e.g. differential evolution
for a fixed time or number of steps.

Returns an object containing all candidates of the final population and their fitnesses.

Just to demonstrate, lets take a concrete problem.

Kallosh, Wrase7 used a nilpotent field to incorporate the addition of anti-branes in
e.g. the “STU”-model. More specifically here: type IIA on T 6/(Z2 × Z2) + metric
fluxes ≡ S3 × S3/(Z2 × Z2) (isotropic). (Timm’s talk)

Following this paper8 we can solve the equations of motion analytically, and we can
filter out points that has V > 0 and η > 0. This they also do.

There are two branches of solutions to the e.o.m.s parametrised by ReZ1, ReZ2,
and ReT ; 3-dimensional problem.

71808.09427: Kallosh, Wrase
81811.07880: Banlaki, Chowdhury, Roupec, Wrase

Random points looks like9

The problem with this model, without additions, is that τ4 = ReZ1ReZ3
2 and

ρ = ReT are not � 1. How far can you push it?

91811.07880: Banlaki, Chowdhury, Roupec, Wrase

To apply BBO to answer this question we must design the fitness function.

We want our fitness to solve the following:

Positive potential

Positive masses

Minimize 1/ρ and 1/τ

We solve all by form a weighted sum of penalties.

V

penalty

threshold

bare penalty

From there it takes “a little bit of programming”,10 and you can get your result.

The optima found is ρ ≈ 1.79 and τ ≈ 0.554.

10https://gitlab.com/johanbluecreek/pres-solving_global

https://gitlab.com/johanbluecreek/pres-solving_global

You may then ask: How much further can we go if we relax our demands and look
for quintessence?

We no-longer solve equations of motion, hence the search space is 9-dimensional.

The fitness function is a weighted sum of penalties for:

Positive potential

ε > 0.1

|η| > 0.1

Minimize 1/ρ and 1/τ

“A little bit of programming”,11 again gives us some result.

The optima found is ρ ≈ 1.82 (3%) and τ ≈ 0.594 (7%).

11https://gitlab.com/johanbluecreek/pres-solving_global

https://gitlab.com/johanbluecreek/pres-solving_global

The point here is not some weak attempt at showing off.

I want you to be able to not only understand, but also do these things too.

My problem is then: You may not be very willing to learn Julia just like that.

How do I convince you?

Just imagine all the programming you would have to do:

Save searches

Load old searches and continue

Log searches to see what the results were

Know what you saved and how your code changed from that point

Some easy way to print old results if you change the code

After all that then you would have to design your fitness function.

Good thing I solved that for you.

Just imagine all the programming you would have to do:

Save searches

Load old searches and continue

Log searches to see what the results were

Know what you saved and how your code changed from that point

Some easy way to print old results if you change the code

After all that then you would have to design your fitness function.

Good thing I solved that for you.

bbsearch.jl12 is what I call the project where you can use BBO and minimize the
amount of fuzz.

Save searches

Load old searches and continue

Log searches to see what the results were

Keeps track of your code (using git)

You can print results of old searches

Most of the work is now designing a fitness function and executing:

$./bbsearch.jl -n -s problem name -r 60

Now you say: “Hol’up, you make it sound too easy; Symbolic expressions?”

12bbsearch.jl: https://gitlab.com/johanbluecreek/bbsearch

https://gitlab.com/johanbluecreek/bbsearch

This little magic function solves that for you:

function buildfun(name::String, expr_file::String, vars::String)
expr = open(expr_file) do file

read(file, String)
end
fun_string = """
begin
function $name($vars)
$expr

end
$name(x::Array{Float64,1}) = $name(x...)
$name(x::Vector) = $name(x...)

end
"""
eval(Meta.parse(fun_string))

end

buildfun("V","V.txt","ReT, ReZ1, ReZ2, h");
V(1.7911, 4.42381, 0.276983, 4.49756)

You can apply this to many other problems.

F-theory on K3×K3: The intersection matrix d and the flux matrix G (22× 22)
determine the size of the tadpole and stability. (Severin’s Talk)

We13 construct penalties for: N = GdGT d

No negative eigenvalues for N

No imaginary parts in eigenvalues for N

All zero eigenvalues except one (ai)

All non-distinct eigenvalues (between ai and bk)

Minimize TrN − 48

131912.XXXXX: Bena, JB, Graña, S. Lüst

Summary

Algorithms from Evolutionary Computing are intended to solve global optimisation
problems.

My intention here was to show

how these strategies work (Differential Evolution in particular)

how you can start using them (BlackBoxOptim.jl and bbsearch.jl)

strategies for developing your own fitness functions

There are probably many problems that are considered “hard” when they really
should not be. The approaches can help you.

Thank you for your attention.

	

