
A NEW LANDSCAPE OF
ORIENTIFOLD VACUA

at de Sitter constructions in string theory
12/10/2019 - Paris

based on 1912.XXXXX & 1902.01412 with Carta and Westphal
and 1812.03999 & with Hebecker, Leonhardt and Westphal

Jakob Moritz (Cornell University)



OUTLINE

INTRO
·

ORIENTIFOLD VACUA OF CICYs
→ distributions of topological data:

D3 tadpole, # O3/O7 planes, # C2/B2 axions, # CS moduli.
·

APPLICATIONS
→ as byproduct: explore new landscape of CY threefolds.
→ observe interesting N = 1 transitions
→ explicit realizations of recent models of ultra light throat axions

·
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O3/O7 ORIENTIFOLDS

One way to construct N = 0, 1 vacua in string theory is to
compactify type IIB string theory on a Calabi-Yau threefold X, and

pick a holomorphic involution
I : X −→ X with I∗(Ω) = −Ω.

Then, modding out I ◦ (−1)FL ◦ (worldsheet parity) gives rise to
orientifold vacua with orientifold planes on the fixed locus of I.

The fixed point locus of this is the union of a divisor Do hosting an
O7 plane and isolated fixed points hosting O3 planes.

The classical effective action is very well understood [Grimm,Louis’04]
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O3/O7 ORIENTIFOLDS (continued)
[Collinucci,Denef,Esole’08]

In a weakly coupled type IIB vacuum, the negative D7 brane charge
of the O7-plane must be canceled by a D7 brane wrapping

[8Do ] ∈ H4(X ,Z).
Importantly, D7 branes, O7 planes, and O3 planes

carry (induced) D3 brane charge

Q ≡ QD3
D7/O7/D3 =

{
−(1

4χf + 7[Do ]3) generic D7
−1

4χf 4 D7s on O7

where χf = Euler char. of fixed locus.

In the latter case, the dilaton is constant,
and we get a non-abelian gauge group SO(8)nO7 . Moreover, the
tadpole is strongly bounded by the Lefschetz fixed point theorem:
−Q = h2,1

− − h1,1
− + 1

2(h1,1 − h2,1) + 1 ≤ 1
2(h1,1 + h2,1) + 1.
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FLUX VACUA IN TYPE IIB STRING THEORY

If χf > 0, the negative D3 charge can be canceled by introducing
three-form fluxes and D3 branes,
0 = Q + ND3 + 1

2

∫
X F3 ∧ H3.

If H3(X ,Z) 3 [F3], [H3] 6= 0, complex structure moduli and dilaton
obtain a potential due to the flux superpotential

Wflux (τ, z) =
∫

X (F3 − τH3) ∧ Ω(z).
[Gukov,Vafa,Witten’99;Giddings,Kachru,Polchinski’01]
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FLUX VACUA IN TYPE IIB STRING THEORY (continued)

It’s vacuum value W0 is key ingredient and control parameter for
KKLT type moduli stabilization, and sets the mass scale of Kähler

moduli. [Kachru,Kallosh,Linde,Trivedi’03]

We expect to be able to tune it down to

min(||W0||2) ∝ Q−(2h2,1
− +1)

[Denef,Douglas’04]

Note however, that while small W0 leads to parametrically
controlled SUSY AdS vacua, regimes of good control for the

corresponding de Sitter vacua are much harder to establish because
size of warped throat does not decouple from size of CY in large

volume limit W0 → 0.
L4

CY
ND7

DT W =0∼ log(|W0|−1)
stable dS∼ log(a−1

warp) ∼ KM
gs M2 ∼

L4
throat

gs M2 .
[Carta,JM,Westphal’19]

see also [Bena,Dudas,Graña,Lüst’18] & Severin’s talk
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LIGHT AXIONS FOR AXION MONODROMY

The orientifold-odd Hodge number h1,1
−

counts the number of light axions

G I =
∫

ΣI
C2 − τB2 , ΣI ∈ H2(X ,Z).

These are interesting (inflaton-)candidates in models of axion
monodromy.

[Silverstein,Westphal’08;McAllister,Silverstein,Westphal’08]

[Marchesano,Shiu,Uranga’14;Blumenhagen,Plauschinn’14;Hebecker,Kraus,Witkowski’14]

...
[Hebecker,Leonhardt,JM,Westphal’18]



COMPLETE INTERSECTION CY THREEFOLDS
[Candelas,Dale,Lutken,Schimmrigk’87]

The famous database of CICY threefolds is usually presented as a
set of 7890 configuration matrices Pn1 m1

1 · · · mK
1

...
...

...
Pnr m1

r · · · mK
r


each defining a CY threefold X as the intersection of K
homogeneous polynomial constraints in Pn1 × ...× Pnr .

c1(X ) = 0: ni + 1 =
∑K

j=1 m
j
i .

dimC(X ) = 3:
∑r

i=1 ni = 3 + K .
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INVOLUTIONS OF CICYs

Strategy: Go through all involutions of the ambient spaces &
transformation properties of polynomials.

Intuitively, a general ambient space involution can be thought of as
a composition of swaps of equal Pn factors and involutions of

individual Pns.
The latter are determined up to isomorphism by the number of

inverted projective coordinates.

→ Candidate CICY involution defined by
I ← list of Pn involutions
S ← list of swapped pairs of Pns
Sc ← list of swapped pairs of polynomials
P ← list of parities of polynomials

Crucial input: Due to [Anderson,Gao,Gray,Lee’17] all but 70 configuration
matrices are favorable in that all CY divisors descend from the

ambient space hyperplane classes. Therefore, h1,1
− = |S|.
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INVOLUTIONS OF CICYs (continued)

Consistency conditions:
1) Composition of swaps of rows and columns must leave the

configuration matrix invariant.
2) Each connected component of the ambient space fixed locus Fi

must intersect X at co-dimension one (O7-plane), three (O3-plane)
or not at all.

3) Across each fixed locus, any collection of n anti-symmetric
polynomials must depend non-trivially on at least n + 1 transverse

coordinates. If it depends only on n, the CY threefold has
singularities at co-dimension one.



SINGULARITIES AT CODIMENSION 3

It is easy to convince yourself that generic CICYs are non-singular,
but this changes drastically for Z2 isometric loci in moduli space:
Consider a component Fk of the ambient space fixed locus, of
co-dimension k , intersecting X in a surface S (O7 plane). This

means that
#(locally anti-symmetric polynomials) = k − 1.

Singularities along S occur when differentials of anti-symmetric
polynomials develop linear dependence. If the polynomials are
sections of the same divisor line bundle O(E ), their differentials
pulled back to F take values in N∗F ⊗O(E ). k − 1 sections of
this rank k vector bundle develop linear dependence at points

Poincaré dual to c2(N∗F ⊗O(E )).
→ nconifolds =

∫
S c2(N∗F ⊗O(E )).
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RESULTS FOR SMOOTH ORIENTIFOLDS OF CICYS

As a first step, let us also impose nconifolds = 0. For h1,1 ≤ 10, we
obtain ≥ 9, 200 distinct orientifolds. Here are some results:

h2,1
− h1,1

− ≤ [h1,1/2]
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Note: · Small h1,1
− appears to be favored.

· But, for each h1,1 we find cases saturating h1,1
− → [h1,1/2].



RESULTS FOR SMOOTH ORIENTIFOLDS OF CICYS
(continued)

-Q≡D3 tadpole nO7 nO3

0 5 10 15 20

0

1000

2000

3000

4000

5000

0 1 2 3 4

0

1000

2000

3000

4000

5000

0 5 10 15

0

1000

2000

3000

4000

5000

(Un)fortunately, these distributions do not look like anything
reasonable. It appears that the smooth orientifolds of CICYs that
we have found are not a fair sample of the space of all orientifolds.

Can we do better?



ORIENTIFOLDS WITH CONIFOLDS

We have been rather restrictive in requiring nconifolds = 0.
nconifolds

0 20 40 60 80 100

0
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20000

30000

40000

Note: #(nconifolds = 1) = 0.
Naturally, we should ask if we can understand the N = 1 Physics of

these singularities!



ORIENTIFOLDS WITH CONIFOLDS (continued)

At the N = 2 level, conifolds can be deformed (Coulomb branch)
and sometimes resolved (Higgs branch).
[Candelas,Green,Hübsch’90;Greene,Morrison,Strominger’95]

Clearly, the orientifolding projects out the Coulomb branch, but can
we resolve?

It turns out that:

1. Upon deforming, the surface S hosting the conifolds becomes
a four-chain whose boundary is a set of nconifolds small
three-spheres. This implies the existence of the Higgs branch
at the N = 2 level.

2. the orientifolding does not project out the Higgs branch (if it
exists).

(In fact, there exist two distinct resolution branches.)
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N = 1 CONIFOLD RESOLUTION BRANCHES

May parameterize deformed conifold as

det

(
x v
u y

)
= ε. [Candelas,de la Ossa’90]

We define the local involution via (v , y) −→ (−v ,−y).
This becomes symmetry if ε = 0.

The two resolution branches are:
A-type B-type(
x v
u y

)
·
(
α
β

)
= 0

(
x u
v y

)
·
(
α
β

)
= 0 [α, β] ∈ P1.

[α, β]→ [−α, β] [α, β]→ [α, β] ← involution
O7 on C2 + O3 O7 on C2|blown up ← fixed locus



N = 1 CONIFOLD RESOLUTION BRANCHES

May parameterize deformed conifold as

det

(
x v
u y

)
= ε. [Candelas,de la Ossa’90]

We define the local involution via (v , y) −→ (−v ,−y).
This becomes symmetry if ε = 0.The two resolution branches are:

A-type B-type(
x v
u y

)
·
(
α
β

)
= 0

(
x u
v y

)
·
(
α
β

)
= 0 [α, β] ∈ P1.

[α, β]→ [−α, β] [α, β]→ [α, β] ← involution
O7 on C2 + O3 O7 on C2|blown up ← fixed locus



N = 1 CONIFOLD RESOLUTION BRANCHES (continued)

The geometric flop-transition A-type → B-type induces a collision
of an O7 and an O3 merging into a single O7 on a different

surface. This transition preserves the D3 tadpole.
cf. [Denef,Douglas,Florea,Grassi,Kachru’05] 
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RESULTS FOR ALL ORIENTIFOLDS OF...

Here are some results of ≥ 533, 000 orientifolds of some CYs:
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THE STATUS

So far, we have scanned through ∼ 90% of the CICYs:
# CICYs
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We have produced about 1.5× 107 orientifolds, many of which are
probably equivalent:

Log(<# orientifolds>) <# "distinct" orientifolds>
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TOWARD A NEW LANDSCAPE OF CY THREEFOLDS

As a by-product of our search for orientifolds, we have found a
(possibly new) set of CY threefolds:

χ
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For these, we are able to compute a subset of the topological data
characterizing it (such as χ), but not all (such as the pair

(h1,1, h2,1)).



ORIENTIFOLDS FOR THROAT AXIONS

So far, we only considered favorable CICYs. The non-favorable ones
can instead be written as anti-canonical hypersurfaces in a product

of del-Pezzo surfaces or dP9 × dP9. [Anderson,Gao,Grey,Lee’17]

Involutions of del-Pezzo surfaces have been classified in
[Blumenhagen,Braun,Grimm,Weigand’08], so we can construct orientifolds in an

analogous way.
It is easy to see that shrinking exceptional curves in del-Pezzo
surfaces induces conifold transitions in the CY hypersurface.

E.g. (dP3, IdP3)× P2 −→ (dP1, IdP1)× P2

is a Z2 invariant conifold transition, with δh1,1
+ = δh1,1

− = 1.
Then, according to [Hebecker,Leonhardt,JM,Westphal], stabilizing near the

transition locus gives rise to an ultra-light (thr)axion with
superpotential

W (G ) ∼
∑

i Mizi exp(iG/Mi ), with
∑

i Mi = 0.



CONCLUSIONS

I I have outlined the construction of a new landscape of
orientifolds that I hope will be a useful pool for model building.

I So far, we have gone through about 90% of the CICY
database, and we hope to be done soon.

I The construction algorithm leads us outside the CICY
database and into possibly uncharted CY-territory.

I Flop transitions between pairs of these CYs induce non-trivial
recombinations of O-planes.

I Using the database, we can find explicit models of "thraxions".



D3 TADPOLE AND CS MODULI

h2,1
−

D3 tadpole


