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Introduction

Typical de Sitter constrution in string theory: warped

compactification

ds210 = e2A(y)gµν(x)dx
µdxν + gmn(y)dy

mdyn + Fluxes, etc

1. Compact 6d manifold (finite 4d Mp) ⇒ low-energy 4d EFT;

2. Effective 4d potential Veff ⇒ stabilize scalars;

3. Veff > 0 at the stabilized minimum;

1 + 2 + 3 ⇒ 4d de Sitter metric is solution for effective 4d theory.
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This talk: alternative approach

We may live in a locallized de Sitter hypersurface in a bulk with

negative curvature
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This talk: alternative approach

We may live in a locallized de Sitter hypersurface in a bulk with

negative curvature

I will illustrate this in a simple bottom-up model based on

holography.

• Gravity side: non-compact asymmetric braneworld

• Dual field theory: no dynamical 4d gravity in the UV;

• Emergent 4d gravity coupled to observed fields;

• No local 4d EFT description

• Positive curvature because of either:

1. External sources turned on;

2. Excited state above the vacuum;

• Mechanism to control the cosmological constant (self-tuning)
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Outline

• Braneworld Setup

• Self-tuning Minkowski vacua.

• dS #1: Stabilized de Sitter brane in an RG flow geometry

• dS #2: de Sitter geometry on a moving brane.
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The model

S = M3

∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ

[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Σ0
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The model

S = M3

∫

d4x

∫

du
√
−g

[

R−
1

2
gab∂aϕ∂bϕ− V (ϕ)

]

+M3

∫

Σ0

d4σ
√
−γ

[

−WB(ϕ)−
1

2
Z(ϕ)γµν∂µϕ∂νϕ+ U(ϕ)R(γ)

]

Holographic dual interpretation:

• Strongly interacting large N QFT (the bulk) coupled to 4d

degrees of freedom (the brane).

• Coupling to 4d fields induce localized terms for the bulk fields

at low energy.
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Minkowski vacuum solution
Bulk geometry: holographic RG flow

ds2 = du2 + e2A(u)ηµνdx
µdxν , ϕ = ϕ(u)

Supported by negative bulk potential with one or more AdS extrema.
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Minkowski vacuum solution
Two solutions joined at the brane:

ds2 = du2 + e2A(u)ηµνdx
µdxν , ϕ = ϕ(u)

AUV (u),ϕUV (u) AIR(u),ϕIR(u)

eAUV → +∞, ϕUV → 0 eAIR → 0, ϕIR → ϕ∗ or +∞
Two Routes to de Sitter in Holography – p.8
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First order formalism
Solutions are conveniently characterized by scalar function W (ϕ)

W = −6Ȧ, W ′ = ϕ̇, −
1

3
W 2 +

1

2

(

W ′
)2

= V

Junction conditions in ϕ-space:

[WUV −WIR]ϕ0
= WB(ϕ0),

[

W ′

UV −W ′

IR

]

ϕ0

= W ′

B(ϕ0)

IR Regularity + junction conditions ⇒ isolated solution(s) for

generic brane vacuum energy (self-tuning of CC)
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Emergent gravity on the brane

Do gravitational interactions between brane sources look 4d?
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Emergent gravity on the brane

Do gravitational interactions between brane sources look 4d?

• Volume is infinite in the UV ⇒ no low energy 4d gravity.

• Localized Einstein term ⇒ existence of a 4d-like graviton

resonance (Dvali,Gabadadze,Porrati, ’00) at “short” distances.

S = M3

∫

du d4x
√
gR5 + . . .+M3

∫

u=u0

d4x
√
γU(ϕ0)R4

Mp ≃ M3U(ϕ0)

• Localized EH term will be generated generically when SUSY is

broken (that can be at a high scale, and generating also a CC is

not an issue).

Two Routes to de Sitter in Holography – p.10



Where to find de Sitter

Generically, isolated stabilized 4d Minkowski-brane solutions exist.

What about 4d curved-brane solurtions?
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Where to find de Sitter

Generically, isolated stabilized 4d Minkowski-brane solutions exist.

What about 4d curved-brane solurtions?

• Generically, no stabilzed curved-brane with the same boundary

conditions as the flat vacuum solution.

• Two options:

1. Change the boundary theory and turn on metric source on

the boundary (Forced holography)

2. Depart from vacuum state and look at time-dependent

excited states (Brane cosmology)
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Option 1: Stabilized de Sitter 4d brane

uUV
uUV

Need two ingredients:

1. Bulk: Holographic RG flows of QFTs on curved spacetimes

2. Brane: Solve junction conditions for a curved brane
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Holographic RG flows on curved manifolds
Ghosh, Kiritsis, FN, Witkowski, 1711.08462

Turn on metric sources in the UV dual QFT:

• In the gravity dual theory, any solution looks asymptotically:

ds2 ≃ du2 + e−2uζµν(x)dx
µdxν + subleading u→−∞

ϕ(u) = ϕ−e
∆−u + subleading u→−∞

• ζµν : metric of space-time on which UV CFT is defined. (a

particular kind of deformation (coupling) in the UV theory).

Associated operator: Tµν .

• ϕ−: Source of relevant operator driving the flow

• ∆− = 4−(dimension of relevant op. in the UV QFT)
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Holographic RG flows on curved manifolds

For the full bulk solution, take the ansatz:

ds2 = du2 + e2A(u)ζµνdx
µdxν , ϕ = ϕ(u)

with ζµν an Einstein metric:

R(ζ)
µν =

R

4
ζµν R = scalar curvature in the dual QFT in the UV

• Study the space of IR-regular solutions as a functions of R.

• Geometry controlled by dimensionless parameter:

R ≡
R

ϕ2/∆−

−
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Stabilized de Sitter brane
Ghosh, Kiritsis, FN, Witkowski, 1807.09794

Introduce 3 superpotentials W (ϕ), S(ϕ), T (ϕ)

W = −2(d− 1)Ȧ, S = ϕ̇, T = e−2AR

uUV

[WUV −WIR]ϕ∗
= [WB + U T/2]ϕ∗

,

[SUV − SIR]ϕ∗
=

[

W ′

B − U ′

BT
]

ϕ∗

• IR Regularity + Junction eqs ⇒ Stabilized de Sitter brane at ϕ∗

(≠ Minkowski value ϕ0)

• Equivalently: use flat boundary metric but turn on

time-dependent scalar field source ϕ−(t) ∼ t−∆− .
Two Routes to de Sitter in Holography – p.16



Example

Take quartic bulk potential V (ϕ) and exponential WB(ϕ) and U(ϕ):

1 2 3 4

0.6

0.7

0.8

0.9

1.0

R

ϕ⋆

ϕ0

ϕ− < 0

ϕ− > 0

Rc
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Example

Take quartic bulk potential V (ϕ) and exponential WB(ϕ) and U(ϕ):
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= naive brane curvature from 4d
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Option 2: Cosmological de Sitter brane

A brane moving with a non-zero velocity in warped geometry

experiences a FRW induced metric (brane cosmology)

Can the 4d induced metric be de Sitter without sources for

boundary metric?

Two Routes to de Sitter in Holography – p.19
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(I Can’t Get No) Backreaction
Jagger,Richards 1965

To get a qualitative grip: look at the system in the probe limit:

• Bulk is the same as the (static) vacuum

ds2 = du2 + e2A(u)
(

−dt2 + dx⃗2
)

, ϕ = ϕ(u),

• Brane position is time-dependent u = u(t), neglect

backreaction on the bulk.
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(I Can’t Get No) Backreaction
Jagger,Richards 1965

To get a qualitative grip: look at the system in the probe limit:

• Bulk is the same as the (static) vacuum

ds2 = du2 + e2A(u)
(

−dt2 + dx⃗2
)

, ϕ = ϕ(u),

• Brane position is time-dependent u = u(t), neglect

backreaction on the bulk.

ds2brane = −(e2A− u̇2)dt2+ e2A(u(t))dx⃗2→− dτ2+ e2A(u(τ))dx⃗2

All is needed is bulk scale factor A(u) plus trajectory u(τ).

Con: Not generically applicable (probe condition may fail)

Pro: u(τ) exactly solvable after A(u) is given
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Recovering self-tuning

• Brane trajectory u(t) described by a classical Lagrangian

system with “energy” E an integral of the motion.

• Non-relativistic limit u̇ ≪ e2A ⇒ Point particle in a potential

• Flat self-tuning solutions are recovered as minima of V
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UV regime

• Scalar approaching UV fixed point at ϕ = 0:

ϕ ≃ 0 W,WB, UB, ZB → constants.

u(τ) ≃ τℓHeff ⇒ a(τ) ≃ exp [−τHeff ]

• Solution approaches a de Sitter brane with Heff =
√

WB
UB

∣

∣

∣

ϕ=0
.

• Same H as one would get from the 4d induced action alone
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Intermediate inflation period
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Intermediate inflation period

√
−V (ϕ)

W (ϕ)

A period of inflation can be realized around intermediate

extrema of the bulk potential.
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Bubble-wall de Sitter

Related ideas by Danielsson et al. ’18 -’19:

dS4 = wall on a vacuum bubble in AdS5 → AdS5 vacuum decay.

• Vacuum decay by brane nucleation (infinitely thin, cannot be

realized with scalars and a potential).

• Spatial sections are spheres.

• Universe starts big

Two Routes to de Sitter in Holography – p.26



Conclusion and outook

• Alternative realizations of dS which are not vacua

• External sources

• Excited state

• Can we realize any of this from top-down?

• Some constraints evaporate

• No finite volume;

• No worries about constant vacuum energy term;

• Can one get scales right?

Two Routes to de Sitter in Holography – p.27
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Self-tuning

−
1

3
W 2 +

1

2

(

W ′
)2

= V

[

WUV −W IR
]

ϕ0

= WB(ϕ0),

[

dWUV

dϕ
−

dW IR

dϕ

]

ϕ0

=
dWB

dϕ
(ϕ0)

one-parameter family of solutions on each side.
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Equilibrium solution

• Regularity fixes the IR solution

• Israel’s junction conditions fix both UV solution and the brane

position.

• For generic brane vacuum energy ∼ Λ4, UV geometry and

brane position adjust so that the brane is flat and the UV glues

to the regular IR (self-tuning).
Self-tuning and cosmology in a holographic braneworld – p.13

francesco nitti

francesco nitti



Equilibrium solution

• Regularity fixes the IR solution

• Israel’s junction conditions fix both UV solution and the brane

position.

• For generic brane vacuum energy ∼ Λ4, UV geometry and

brane position adjust so that the brane is flat and the UV glues

to the regular IR (self-tuning).
Self-tuning and cosmology in a holographic braneworld – p.13

francesco nitti

francesco nitti

francesco nitti

francesco nitti

francesco nitti



RG flows on (d)S4

R = 0 R > 0
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RG flows on (d)S4

R = 0 R > 0

• Curvature effect subleading in the UV, but dominates in the IR

• R ≠ 0: spacetimes ends at finite u0, with eA(u) ∼ (u0 − u)

• Scalar field does not reach IR fixed-point: ϕ(u0) determined by

R through IR regularity

Two Routes to de Sitter in Holography – p.15



First order formalims

Introduce 3 superpotentials W (ϕ), S(ϕ), T (ϕ)

W = −2(d− 1)Ȧ, S = ϕ̇, T = e−2ARuv

Einstein equations:

S2 − SW ′ = −
2

d
T,

d

2(d− 1)
W 2 − S2 − 2T = −2V,

SS′ −
d

2(d− 1)
SW = −V ′

Curved holograhic RG flows, quantum phase transitions, and AdS vacuum decay – p.30



First order formalims

Introduce 3 superpotentials W (ϕ), S(ϕ), T (ϕ)

W = −2(d− 1)Ȧ, S = ϕ̇, T = e−2ARuv

Einstein equations:

S2 − SW ′ = −
2

d
T,

d

2(d− 1)
W 2 − S2 − 2T = −2V,

SS′ −
d

2(d− 1)
SW = −V ′

• System is second order: Two integration constants C,R

• R = 0, ⇒ S = W ′, T = 0, back to flat superpotential eq.
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UV Expansion

Close to UV maximum of V expand solution in powers of ϕ:

W−(ϕ) = 2(d−1)+
∆−

2
ϕ2+. . .+

R
d
ϕ2/∆

−+. . .+Cϕd/∆
−+. . . ϕ→0
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UV Expansion

Close to UV maximum of V expand solution in powers of ϕ:

W−(ϕ) = 2(d−1)+
∆−

2
ϕ2+. . .+

R
d
ϕ2/∆

−+. . .+Cϕd/∆
−+. . . ϕ→0

Integrating:

ϕ ≃ ϕ−e
∆

−
u+. . . , A(u) = −u+. . .+

Rϕ2/∆
−

−

4d(d− 1)
e2u+. . . u→−∞

Rϕ2/∆
−

− = Ruv

Given R and C: 1-one parameter family of solutions

parametrized by either ϕ− or Ruv.
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Geometry in the IR

• Original IR fixed point ϕ∗ unreachable: W → +∞ at ϕ0 < ϕ∗.

Solution ends here.

ϕ → ϕ0 : W ≃
W0√
ϕ0 − ϕ

Curved holograhic RG flows, quantum phase transitions, and AdS vacuum decay – p.32
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ϕ → ϕ0 : W ≃
W0√
ϕ0 − ϕ

• Pick endpoint ϕ0: imposing regularity fixes

W0 = cnst
√

−V ′(ϕ0) such that space ends regularly:

ds2 ≃ du2 + (u0 − u)2dΩ2
4 u→u0

• No regular solution arriving from “wrong side” of V
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Geometry in the IR

• Original IR fixed point ϕ∗ unreachable: W → +∞ at ϕ0 < ϕ∗.

Solution ends here.

ϕ → ϕ0 : W ≃
W0√
ϕ0 − ϕ

• Pick endpoint ϕ0: imposing regularity fixes

W0 = cnst
√

−V ′(ϕ0) such that space ends regularly:

ds2 ≃ du2 + (u0 − u)2dΩ2
4 u→u0

• No regular solution arriving from “wrong side” of V

• Choice of ϕ0 fixes R, C

• Equivalent: choose R as independent, determine endpoint.
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Regular Curved RG flows

UV
ϕ0

IR

ϕ∗

W (ϕ)

WC,R(ϕ)
√

−
4(d−1)V (ϕ)

d

One-parameter family of regular solutions parametrized by R

C = C(R), ϕ0 = ϕ0(R) < O >= cnst C(R)ϕ∆+/∆
−

−

Curved holograhic RG flows, quantum phase transitions, and AdS vacuum decay – p.33



UV and IR limits

UV IRR

ϕϕ∗

W (ϕ)

R → 0 ϕ0 → ϕ∗ (IR limit)

R → +∞ ϕ0 → 0 (UV limit)

Curved holograhic RG flows, quantum phase transitions, and AdS vacuum decay – p.34



Fixed-point solution

UV limit: solutions approaches (d)Sd slicing of (E)AdSd+1.

ds2 = du2 + sinh2(u0 − u)dΩ2
4 Ruv = 4d(d− 1)e−2u0

!

"Π

" Π2

Π
2

Π
Ψ

dSd cosmological patch covers 1/4 Poincarè patch of AdSd+1

Two Routes to de Sitter in Holography – p.30
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