Two Routes to de Sitter in Holography

Francesco Nitti

Laboratoire APC, U. Paris Diderot

de Sitter Constructions in String Theory - IPhT, December 11, 2019

1704.05075 with C.Charmousis and E.Kiritsis 1711.08462, 1807.09794 with J.K.Ghosh, E.Kiritsis, L.Witkowski 1904.02727 with A.Amariti, C.Charmousis, D. Forcella and E.Kiritsis

Introduction

Typical de Sitter constrution in string theory: warped compactification

 $ds_{10}^2 = e^{2A(y)}g_{\mu\nu}(x)dx^{\mu}dx^{\nu} + g_{mn}(y)dy^m dy^n + \text{Fluxes, etc}$

- 1. Compact 6d manifold (finite 4d M_p) \Rightarrow low-energy 4d EFT;
- 2. Effective 4d potential $V_{eff} \Rightarrow$ stabilize scalars;
- 3. $V_{eff} > 0$ at the stabilized minimum;

 $1 + 2 + 3 \Rightarrow 4d$ de Sitter metric is solution for effective 4d theory.

Introduction

Typical de Sitter constrution in string theory: warped compactification

 $ds_{10}^2 = e^{24(y)} a_{\mu\nu}(x) dx^{\mu} dx^{\nu} + g_{mn}(y) dy^m dy^n +$ Fluxes etc

- 1. Compact 6d manifold (finite 4^{-1}) \Rightarrow low-energy 4d EFT;
- 2. Effective 4d potential $V_{eff} \Rightarrow$ stabilize scalars;
- 3. $V_{eff} > 0$ at the stabilized minimum;

 $1 + 2 + 3 \Rightarrow 4d$ de Sitter metric is solution for effective 4d theory.

This talk: alternative approach

We may live in a locallized de Sitter hypersurface in a bulk with negative curvature

This talk: alternative approach

We may live in a locallized de Sitter hypersurface in a bulk with negative curvature

I will illustrate this in a simple **bottom-up model** based on holography.

- Gravity side: non-compact asymmetric braneworld
- Dual field theory: no *dynamical* 4d gravity in the UV;
- Emergent 4d gravity coupled to observed fields;
- No *local* 4d EFT description
- Positive curvature because of either:
 - 1. External sources turned on;
 - 2. Excited state above the vacuum;
- Mechanism to control the cosmological constant (*self-tuning*)

This talk: alternative approach

We may live in a locallized de Sitter hypersurface in a bulk with negative curvature I will illustrate this in a simple bottom-up model based on holography.

- Gravity side: non-compact asymmetric braneworld
- Dual field theory: no *dynamical* 4d gravity in the UV;
- Emergent 4d gravity coupled to observed fields;
- No *local* 4d EFT description
- Positive curvature because of either:
 - 1. External sources turned on;
 - 2. Excited state above the vacuum;
- Mechanism to control the cosmological constant (self-tuning)

Top down

sting th.

KKLT-like

Outline

- Braneworld Setup
- Self-tuning Minkowski vacua.
- dS #1: Stabilized de Sitter brane in an RG flow geometry
- dS #2: de Sitter geometry on a moving brane.

$$S = M^{3} \int d^{4}x \int du \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right]$$
$$+ M^{3} \int_{\Sigma_{0}} d^{4}\sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} \right]$$

5d Bulk action

$$S = M^{3} \int d^{4}x \int du \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_{a} \varphi \partial_{b} \varphi - V(\varphi) \right]$$

$$+ M^{3} \int_{\Sigma_{0}} d^{4} \sigma \sqrt{-\gamma} \left[-W_{B}(\varphi) - \frac{1}{2} Z(\varphi) \gamma^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + U(\varphi) R^{(\gamma)} \right]$$

$$4d\text{-Localized}$$
brane action
$$\Sigma_{0}$$

$$S = M^3 \int d^4x \int du \sqrt{-g} \left[R - \frac{1}{2} g^{ab} \partial_a \varphi \partial_b \varphi - V(\varphi) \right]$$

$$+M^{3}\int_{\Sigma_{0}}d^{4}\sigma\sqrt{-\gamma}\left[-W_{B}(\varphi)-\frac{1}{2}Z(\varphi)\gamma^{\mu\nu}\partial_{\mu}\varphi\partial_{\nu}\varphi+U(\varphi)R^{(\gamma)}\right]$$

Holographic dual interpretation:

- Strongly interacting large N QFT (the bulk) coupled to 4d degrees of freedom (the brane).
- Coupling to 4d fields induce localized terms for the bulk fields at low energy.

Minkowski vacuum solution

Bulk geometry: holographic RG flow

$$ds^{2} = du^{2} + e^{2A(u)}\eta_{\mu\nu}dx^{\mu}dx^{\nu}, \qquad \varphi = \varphi(u)$$

Supported by negative bulk potential with one or more AdS extrema.

Minkowski vacuum solution

Two solutions joined at the brane:

$$ds^{2} = du^{2} + e^{2A(u)}\eta_{\mu\nu}dx^{\mu}dx^{\nu}, \qquad \varphi = \varphi(u)$$

First order formalism

Solutions are conveniently characterized by scalar function $W(\varphi)$

$$W = -6\dot{A}, \quad W' = \dot{\varphi}, \quad -\frac{1}{3}W^2 + \frac{1}{2}(W')^2 = V$$

Junction conditions in φ -space:

 $[W_{UV} - W_{IR}]_{\varphi_0} = W_B(\varphi_0), \qquad [W'_{UV} - W'_{IR}]_{\varphi_0} = W'_B(\varphi_0)$

IR Regularity + junction conditions \Rightarrow isolated solution(s) for generic brane vacuum energy (*self-tuning of CC*)

Emergent gravity on the brane

Do gravitational interactions between brane sources look 4d?

Emergent gravity on the brane

Do gravitational interactions between brane sources look 4d?

- Volume is infinite in the UV \Rightarrow no low energy 4d gravity.
- Localized Einstein term ⇒ existence of a 4d-like graviton resonance (Dvali,Gabadadze,Porrati, '00) at "short" distances.

$$S = M^3 \int du \, d^4x \, \sqrt{g}R_5 + \ldots + M^3 \int_{u=u_0} d^4x \, \sqrt{\gamma} U(\varphi_0)R_4$$

 $M_p \simeq M^3 U(\varphi_0)$

• Localized EH term will be generated generically when SUSY is broken (that can be at a high scale, and generating also a CC is not an issue).

Where to find de Sitter

Generically, isolated stabilized 4d Minkowski-brane solutions exist. What about 4d curved-brane solutions?

Where to find de Sitter

Generically, isolated stabilized 4d Minkowski-brane solutions exist. What about 4d curved-brane solurtions?

- Generically, no stabilzed curved-brane with the same boundary conditions as the flat vacuum solution.
- Two options:
 - 1. Change the boundary theory and turn on metric source on the boundary (*Forced holography*)
 - 2. Depart from vacuum state and look at time-dependent excited states (*Brane cosmology*)

Option 1: Stabilized de Sitter 4d brane

Need two ingredients:

- 1. Bulk: Holographic RG flows of QFTs on curved spacetimes
- 2. Brane: Solve junction conditions for a curved brane

Holographic RG flows on curved manifolds

Ghosh, Kiritsis, FN, Witkowski, 1711.08462

Turn on metric sources in the UV dual QFT:

• In the gravity dual theory, any solution looks asymptotically:

 $ds^2 \simeq du^2 + e^{-2u} \zeta_{\mu\nu}(x) dx^{\mu} dx^{\nu} + \text{subleading} \qquad u \to -\infty$

$$\varphi(u) = \varphi_{-}e^{\Delta_{-}u} + \text{subleading} \qquad u \to -\infty$$

- $\zeta_{\mu\nu}$: metric of space-time on which UV CFT is defined. (a particular kind of deformation (coupling) in the UV theory). Associated operator: $T_{\mu\nu}$.
- φ_{-} : Source of relevant operator driving the flow
- $\Delta_{-} = 4 (\text{dimension of relevant op. in the UV QFT})$

Holographic RG flows on curved manifolds

For the full bulk solution, take the ansatz:

 $ds^{2} = du^{2} + e^{2A(u)} \zeta_{\mu\nu} dx^{\mu} dx^{\nu}, \qquad \varphi = \varphi(u)$

with $\zeta_{\mu\nu}$ an Einstein metric:

 $R^{(\zeta)}_{\mu\nu} = \frac{R}{4}\zeta_{\mu\nu}$ R = scalar curvature in the dual QFT in the UV

- Study the space of IR-regular solutions as a functions of R.
- Geometry controlled by dimensionless parameter:

$$\mathcal{R} \equiv \frac{R}{\varphi_{-}^{2/\Delta_{-}}}$$

Stabilized de Sitter brane

Ghosh, Kiritsis, FN, Witkowski, 1807.09794

Introduce 3 superpotentials $W(\varphi), S(\varphi), T(\varphi)$

$$W = -2(d-1)\dot{A}, \quad S = \dot{\varphi}, \quad T = e^{-2A}R$$

$$[W_{UV} - W_{IR}]_{\varphi_*} = [W_B + UT/2]_{\varphi_*},$$
$$[S_{UV} - S_{IR}]_{\varphi_*} = [W'_B - U'_BT]_{\varphi_*}$$

- IR Regularity + Junction eqs ⇒ Stabilized de Sitter brane at φ_{*} (≠ Minkowski value φ₀)
- Equivalently: use flat boundary metric but turn on time-dependent scalar field source $\varphi_{-}(t) \sim t^{-\Delta_{-}}$.

Example

Take quartic bulk potential $V(\varphi)$ and exponential $W_B(\varphi)$ and $U(\varphi)$:

Example

Take quartic bulk potential $V(\varphi)$ and exponential $W_B(\varphi)$ and $U(\varphi)$:

Example

Take quartic bulk potential $V(\varphi)$ and exponential $W_B(\varphi)$ and $U(\varphi)$:

Option 2: Cosmological de Sitter brane

A brane moving with a non-zero velocity in warped geometry experiences a FRW induced metric (brane cosmology)

Can the 4d induced metric be de Sitter *without* sources for boundary metric?

Realize de Sitter as an excited state in the same theory with Minkowski vacuum

Amariti, Charmousis, Forcella, Kiritsis, FN '19

(I Can't Get No) Backreaction

Jagger, Richards 1965

To get a qualitative grip: look at the system in the probe limit:

• Bulk is the same as the (static) vacuum

$$ds^{2} = du^{2} + e^{2A(u)} \left(-dt^{2} + d\vec{x}^{2} \right), \quad \varphi = \varphi(u),$$

• Brane position is time-dependent u = u(t), neglect backreaction on the bulk.

(I Can't Get No) Backreaction

Jagger, Richards 1965

To get a qualitative grip: look at the system in the probe limit:

• Bulk is the same as the (static) vacuum

$$ds^{2} = du^{2} + e^{2A(u)} \left(-dt^{2} + d\vec{x}^{2} \right), \quad \varphi = \varphi(u),$$

• Brane position is time-dependent u = u(t), neglect backreaction on the bulk.

$$ds_{brane}^2 = -(e^{2A} - \dot{u}^2)dt^2 + e^{2A(u(t))}d\vec{x}^2 \rightarrow -d\tau^2 + e^{2A(u(\tau))}d\vec{x}^2$$

All is needed is bulk scale factor A(u) plus trajectory $u(\tau)$. Con: Not generically applicable (probe condition may fail) Pro: $u(\tau)$ exactly solvable after A(u) is given

Recovering self-tuning

- Brane trajectory u(t) described by a classical Lagrangian system with "energy" E an integral of the motion.
- Non-relativistic limit $\dot{u} \ll e^{2A} \Rightarrow$ Point particle in a potential

• Flat self-tuning solutions are recovered as minima of V

Recovering self-tuning

- Brane trajectory u(t) described by a classical Lagrangian system with "energy" E an integral of the motion.
- Non-relativistic limit $\dot{u} \ll e^{2A} \Rightarrow$ Point particle in a potential

• Flat self-tuning solutions are recovered as minima of V

UV regime

• Scalar approaching UV fixed point at $\varphi = 0$:

 $\varphi \simeq 0 \quad W, W_B, U_B, Z_B \rightarrow \text{constants.}$

$$u(\tau) \simeq \tau \ell H_{eff} \quad \Rightarrow \quad a(\tau) \simeq \exp\left[-\tau H_{eff}\right]$$

- Solution approaches a de Sitter brane with $H_{eff} = \sqrt{\frac{W_B}{U_B}}\Big|_{\varphi=0}$.
- Same *H* as one would get from the 4d induced action alone

Intermediate inflation period

Intermediate inflation period

A period of inflation can be realized around intermediate extrema of the bulk potential.

Bubble-wall de Sitter

Related ideas by Danielsson et al. '18 -'19:

 dS_4 = wall on a vacuum bubble in $AdS_5 \rightarrow AdS_5$ vacuum decay.

- Vacuum decay by brane nucleation (infinitely thin, cannot be realized with scalars and a potential).
- Spatial sections are spheres.
- Universe starts *big*

Conclusion and outook

- Alternative realizations of dS which are not *vacua*
 - External sources
 - Excited state
- Can we realize any of this from top-down?
- Some constraints evaporate
 - No finite volume;
 - No worries about constant vacuum energy term;
 - Can one get scales right?

Even if you don't like bottom-up,

have some courtesy, have some sympathy, and some taste

Self-tuning

$$-\frac{1}{3}W^{2} + \frac{1}{2}\left(W'\right)^{2} = V$$

 $\begin{bmatrix} W^{UV} - W^{IR} \end{bmatrix}_{\varphi_0} = W_B(\varphi_0), \qquad \begin{bmatrix} \frac{dW^{UV}}{d\varphi} - \frac{dW^{IR}}{d\varphi} \end{bmatrix}_{\varphi_0} = \frac{dW_B}{d\varphi}(\varphi_0)$

Deep interior

one-parameter family of solutions on each side.

'Ad S

Boundary (UV)

Equilibrium solution

- Regularity fixes the IR solution
- Israel's junction conditions fix both UV solution and the brane position.
- For generic brane vacuum energy $\sim \Lambda^4$, UV geometry and brane position adjust so that the brane is flat and the UV glues to the regular IR (*self-tuning*).

Equilibrium solution

- Regularity fixes the IR solution
- Israel's junction conditions fix both UV solution and the brane position.
- For generic brane vacuum energy $\sim \Lambda^4$, UV geometry and brane position adjust so that the brane is flat and the UV glues to the regular IR (*self-tuning*).

RG flows on $(d)S_4$

R = 0

R > 0

RG flows on $(d)S_4$

R = 0

R > 0

- Curvature effect subleading in the UV, but dominates in the IR
- $R \neq 0$: spacetimes ends at finite u_0 , with $e^{A(u)} \sim (u_0 u)$
- Scalar field does not reach IR fixed-point: $\varphi(u_0)$ determined by \mathcal{R} through IR regularity

First order formalims

Introduce 3 superpotentials $W(\varphi), S(\varphi), T(\varphi)$

$$W = -2(d-1)\dot{A}, \quad S = \dot{\varphi}, \quad T = e^{-2A}R^{uv}$$

Einstein equations:

$$S^{2} - SW' = -\frac{2}{d}T, \quad \frac{d}{2(d-1)}W^{2} - S^{2} - 2T = -2V,$$
$$SS' - \frac{d}{2(d-1)}SW = -V'$$

First order formalims

Introduce 3 superpotentials $W(\varphi), S(\varphi), T(\varphi)$

$$W = -2(d-1)\dot{A}, \quad S = \dot{\varphi}, \quad T = e^{-2A}R^{uv}$$

Einstein equations:

$$S^{2} - SW' = -\frac{2}{d}T, \quad \frac{d}{2(d-1)}W^{2} - S^{2} - 2T = -2V,$$
$$SS' - \frac{d}{2(d-1)}SW = -V'$$

- System is second order: Two integration constants C, \mathcal{R}
- $R = 0, \Rightarrow S = W', T = 0$, back to flat superpotential eq.

UV Expansion

Close to UV maximum of V expand solution in powers of φ :

$$W_{-}(\varphi) = 2(d-1) + \frac{\Delta_{-}}{2}\varphi^{2} + \ldots + \frac{\mathcal{R}}{d}\varphi^{2/\Delta_{-}} + \ldots + C\varphi^{d/\Delta_{-}} + \ldots \qquad \varphi \to 0$$

UV Expansion

Close to UV maximum of V expand solution in powers of φ :

$$W_{-}(\varphi) = 2(d-1) + \frac{\Delta_{-}}{2}\varphi^{2} + \ldots + \frac{\mathcal{R}}{d}\varphi^{2/\Delta_{-}} + \ldots + C\varphi^{d/\Delta_{-}} + \ldots \qquad \varphi \to 0$$

Integrating:

$$\varphi \simeq \varphi_- e^{\Delta_- u} + \dots, \quad A(u) = -u + \dots + \frac{\mathcal{R}\varphi_-^{2/\Delta_-}}{4d(d-1)}e^{2u} + \dots \quad u \to -\infty$$

$$\mathcal{R}\varphi_{-}^{2/\Delta_{-}} = R^{uv}$$

Given \mathcal{R} and C: 1-one parameter family of solutions parametrized by either φ_{-} or \mathbb{R}^{uv} .

Geometry in the IR

Original IR fixed point φ_{*} unreachable: W → +∞ at φ₀ < φ_{*}.
 Solution ends here.

$$\varphi \to \varphi_0: \quad W \simeq \frac{W_0}{\sqrt{\varphi_0 - \varphi}}$$

Geometry in the IR

Original IR fixed point φ_{*} unreachable: W → +∞ at φ₀ < φ_{*}.
 Solution ends here.

$$\varphi \to \varphi_0: \quad W \simeq \frac{W_0}{\sqrt{\varphi_0 - \varphi}}$$

• Pick endpoint φ_0 : imposing regularity fixes $W_0 = cnst \sqrt{-V'(\varphi_0)}$ such that space ends regularly:

$$ds^2 \simeq du^2 + (u_0 - u)^2 d\Omega_4^2 \qquad u \to u_0$$

• No regular solution arriving from "wrong side" of V

Geometry in the IR

Original IR fixed point φ_{*} unreachable: W → +∞ at φ₀ < φ_{*}.
 Solution ends here.

$$\varphi \to \varphi_0: \quad W \simeq \frac{W_0}{\sqrt{\varphi_0 - \varphi}}$$

• Pick endpoint φ_0 : imposing regularity fixes $W_0 = cnst \sqrt{-V'(\varphi_0)}$ such that space ends regularly:

$$ds^2 \simeq du^2 + (u_0 - u)^2 d\Omega_4^2 \qquad u \to u_0$$

- No regular solution arriving from "wrong side" of V
- Choice of φ_0 fixes \mathcal{R}, C
- Equivalent: choose \mathcal{R} as independent, determine endpoint.

Regular Curved RG flows

One-parameter family of regular solutions parametrized by \mathcal{R}

 $C = C(\mathcal{R}), \quad \varphi_0 = \varphi_0(\mathcal{R}) \qquad < O >= cnst \ C(\mathcal{R}) \varphi_-^{\Delta_+/\Delta_-}$

UV and IR limits

 $\mathcal{R} \to 0 \qquad \varphi_0 \to \varphi_* \quad (\text{IR limit})$

 $\mathcal{R} \to +\infty \qquad \varphi_0 \to 0 \quad (\text{UV limit})$

Fixed-point solution

UV limit: solutions approaches $(d)S_d$ slicing of $(E)AdS_{d+1}$.

 $ds^{2} = du^{2} + \sinh^{2}(u_{0} - u)d\Omega_{4}^{2} \qquad R^{uv} = 4d(d - 1)e^{-2u_{0}}$

 dS_d cosmological patch covers 1/4 Poincarè patch of AdS_{d+1}